Characterization of sucking type mango genotypes under sub-tropics of Punjab

Navprem^{*}, Mandeep Singh Gill and P.P.S. Gill

Department of Fruit Science, Punjab Agricultural University, Ludhiana 141 004, Punjab

ABSTRACT

Nine sucking mango genotypes were evaluated for the qualitative and quantitative characteristics of plant, leaf, inflorescence, flowering and fruit morphometric as per IPGRI Mango Descriptor. The colour measurements of young emerging leaves were recorded with colour flex meter and it varied from brownish-green to purplebrown. In all genotypes, full bloom was observed in the last week of March, while fruit set from 25th March to 3rd of April. Wide variability among the sucking mango genotypes was observed with respect to fruit length/breadth ratio (1.02 - 1.84), fruit weight (77.3 - 203.7 g), fruit yield (34.7 - 100.5 kg/tree), TSS/acid ratio (21.3 - 51.7) and pulp/stone ratio (1.81 - 2.72). The incidence of mango malformation varied from 4.2 per cent in GN₃ to 15.1 per cent in GN₄. The variability in the existing germplasm can be exploited for strategic future mango improvement programmes.

Key words: Characterization, genetic variability, sucking type mango.

INTRODUCTION

In Punjab, mango is commercially grown in sub-montane zone and this region is famous for sucking type of seedling mangoes since it has a rich reservoir of genetic diversity. Mono-embryonic mango seedlings growing on roadsides, riverbanks, isolated places and government lands are being uprooted in last few decades to meet the local requirements for fodder, fuel, widening of roads, construction of check dams for ensured irrigation facilities in undulated terrains etc. (Navprem et al., 7). These rare native mango genetic resources are known to possess desirable horticultural traits and primarily inevitable provide livelihood has been eroded or at the verge of extinction. To strengthen the genetic base and conservation of elite sucking mangoes, a survey was carried out in early seventies and consequently more than 60 mango genotypes with unique morphological characteristics like oblong shape, unrupturable skin, superior blend of TSS/acid ratio, small stone with scanty fibres and red blush on the skin etc. were collected and planted at the Fruit Research Station, Gangian, Punjab. Several workers have also characterized the promising local mango genotypes under diverse eco-geographical conditions in tropical and sub-tropical regions of the country (Navprem et al., 7; Shrivastava et al., 12; Selvan et al., 10; Singh, 13), however, detailed information on various aspects like leaf, flowering and fruit characteristics in sucking type of mangoes is not available. Therefore, present investigations were planned to characterize

sucking mangoes on the basis of flowering, fruit morphology and quality traits to facilitate mango breeding programme.

MATERIALS AND METHODS

Nine elite mango genotypes of 35-year-old age, raised on desi mango seedlings and maintained under uniform cultural practices were evaluated for four years at PAU-Fruit Research Station, Gangian, Punjab. Vegetative, floral and fruit traits were studied usingIPGRI 'Mango Descriptors' (Anon, 2). Colour of young emerged leaves was recorded with Hunter Lab Colour Flex EZ, USA scale, *i.e.* 'L', 'a' and 'b' values. Vegetative growth and leaf characters were recorded in the month of October after the growth cessation. Tree volume (m³) was estimated from tree height and spread (N-S and E-W) values using formula suggested by Westwood (14). Floral malformation was noted in the month of April by counting the infected panicles and percentage was worked out from total number of panicles on the tree. Ten panicles in different directions were tagged after their emergence for determining various morphological observations. Male and hermaphrodite flowers were counted from selected 300 flowers from tagged panicles and ratio was estimated. Average fruit yield data for four years was noted. Ten fruits per tree were harvested to analyze different physico-chemical characteristics. Fruit stone size (length, breadth and thickness) was measured with Vernier calipers. Juice was extracted from the pulp by straining through a muslin cloth and total soluble solids were noted with hand refractometer in term of degree Brix and values were

^{*}Corresponding author's E-mail: navpremsingh@pau.edu

corrected at 20°C. Fruit juice acid content, reducing and total sugars were determined as per the standard procedures (AOAC,1). The data recorded were statistically analyzed as suggested by Gomez and Gomez (4).

RESULTS AND DISCUSSION

Leaf shape was ovate in GN1 and GN5 and elliptical in rest of genotypes, whereas leaf length varied between 16.0 cm in GN_{19} to 24.4 cm in GN_{6} ; leaf breadth was maximum 6.83 cm in GN, and minimum 2.43 cm in GN₄ and petiole length ranged from 1.83 cm (GN₄) to 4.47 cm (GN₆). Leaf characters, viz., acuminate leaf apex, acute leaf base with wavy leaf margin was noted in the most of genotypes under study. The colour of emerged leaf was brownish green to purple brown as confirmed from the recorded values of 'L' 'a', and 'b' (Table 1). Initiation and end of flowering season under Punjab conditions was observed from the last week of February up to mid of March, respectively (Table 2). In all genotypes, full bloom was observed during 22nd to 28th March. Whereas, fruit set was noted during 25th March to 3rd April. Hermaphrodite flowers ranged from 40.2 to 61.9 per cent, minimum in GN_4 and maximum in GN_{12} , which is essential for the initial fruit set. Sharma and Singh (11) reported that number of hermaphrodite flowers in mango tree depends upon the variety and its adaptability in the region; however, it is not accountable for the final fruit retention. Flowering characters like panicle size (length and breadth) ranged from 13.47 to 25.88 cm and 6.06 to 10.19 cm, respectively; however, shape of inflorescence

was conical in GN_1 , GN_4 , GN_5 , GN_7 , GN_{19} and broadly pyramid in GN_2 , GN_3 , GN_{12} . Number of rachis/panicle was maximum (22.3) in GN_7 and minimum (14.9) in GN_2 . Likewise, flowers density/panicle was sparse in GN_1 , dense in GN_2 and GN_{19} and medium in rest of the genotypes. The colour of petals in GN_5 and GN_6 was yellowish-pink and both genotypes produced two types of flowers, *i.e.*, pentamerous and tetramerous. The colour of rachis varied from light green to reddish green (Table 2a). In the present studies, disparity in flowering characters among different genotypes selected from open-pollinated seedling population may be due to the introgression of genes during hybridization (Damodaran *et al.*, 3).

Mango genotypes were also classified on the basis of fruit shape as ovate (GN₁, GN₃, GN₅), oblong $(GN_2, GN_6, GN_7, GN_{12})$ and ovate oblong (GN_4, GN_{19}) . On ripening, the fruits in GN₂, GN₅, GN₆ and GN₁₉ genotypes had attractive yellow colour with red or Sindhuri blush on their peel and fruit pulp colour ranged from yellow to orange. These genotypes can be used to develop new hybrids with appealing fruit peel colour to fetch good market remuneration. Adherence of skin to pulp was high in GN₄ and GN₇, depth of stalk cavity was shallow in GN₆, insertion of stalk was oblique in GN₂, GN₃, GN₅ and fruit beak and sinus was absent in GN, and GN, (Table 3). Fruit apex varied from acute to obtuse, likewise density of lenticels on fruit skin was sparse to dense and size of lenticels ranged from small to medium. Wide variability was noted for the presence of aroma among fruits during fruit ripening and is considered as the most important character to identify sucking type of

Table 1	 Description 	of leaf	characters	in	sucking	type	mango	genotypes.
---------	---------------------------------	---------	------------	----	---------	------	-------	------------

Genotype	Leaf shape	Leaf length	Leaf breadth	Petiole length	Leaf apex	Leaf base	Leaf margin	Visual colour of emerging leaf	Leaf colour coordinates		
		(cm)	(cm)	(cm)					L*	a**	b***
GN ₁	Ovate	22.3	6.83	2.84	Acuminate	Acute	Wavy	Pinkish-brown	29.22	-1.40	7.64
GN_2	Elliptical	18.8	5.33	2.88	Acuminate	Acute	Wavy	Brownish-green	30.19	-3.21	10.09
GN_3	Elliptical	21.3	5.57	4.27	Attenuate	Acute	Wavy	Greenish-brown	28.53	12.75	6.77
GN_4	Elliptical	16.9	2.43	1.83	Acuminate	Acute	Entire	Greenish-brown	29.54	-1.60	8.62
GN₅	Ovate	17.3	4.31	3.12	Acuminate	Acute	Wavy	Greenish-brown	31.87	2.26	9.06
GN_6	Elliptical	24.4	6.60	4.47	Acuminate	Obtuse	Wavy	Brownish-purple	29.18	8.53	7.91
GN_7	Elliptical	19.6	5.13	2.73	Acuminate	Acute	Wavy	Purple-brown	35.10	4.52	10.74
GN ₁₂	Elliptical	18.3	5.93	2.25	Acuminate	Obtuse	Wavy	Brownish-green	31.61	-1.87	9.90
GN ₁₉	Elliptical	16.0	5.05	2.70	Acuminate	Acute	Entire	Purple-brown	34.07	3.19	8.30
CD _{0.05}	-	3.4	0.47	1.02	-	-	-	-	2.45	1.58	1.98

L* = Light, a** = Redness, b*** = Yellowness

Indian Journal of Horticulture, March 2014

Genotype	Initiation of flowering	Full bloom	Time of fruit set	Male flower (%)	Hermaphrodite flower (%)	Panicle length (cm)	Panicle breadth (cm)	Shape of inflorescence
GN_1	28 th Feb - 2 nd March	24 th March	27 th - 29 th March	46.3	53.7	14.4	6.5	Conical
GN_2	27 th Feb - 4 th March	25 th March	28 th - 30 th March	50.4	49.6	17.5	10.2	Broadly pyramid
${\sf GN}_{\scriptscriptstyle 3}$	1 st March - 4 th March	22 nd March	25 th - 27 th March	57.3	42.7	18.1	7.3	Broadly pyramid
${\sf GN}_4$	26 th - 28 th Feb	26 th March	31 st March - 2 nd April	59.8	40.2	20.6	6.7	Conical
${\sf GN}_{\scriptscriptstyle 5}$	26 th Feb - 1 st March	26 th March	30 th - 31 st March	49.5	50.5	18.1	6.4	Conical
GN_6	1 st March - 3 rd March	28th March	30 th - 31 st March	44.6	55.4	17.5	6.1	Pyramid
GN ₇	28 th Feb - 2 nd March	26 th March	29 th - 31 st March	38.2	61.8	25.9	9.9	Conical
${\sf GN}_{\rm 12}$	1 st March - 4 th March	28 th March	1 st - 3 rd April	38.1	61.9	13.5	6.6	Broadly pyramid
GN ₁₉	1 st - 5 th March	27 th March	30 th March - 2 nd April	53.7	56.3	20.4	8.9	Conical
CD _{0.05}	-	-	-	4.5	2.7	1.20	0.75	-

Table 2. Description of flowering characters in sucking type mango genotypes.

Table 2a.	Description	of flowering	and fruit	attributes	in sucking	type mango	genotypes.

Genotype	No. of	Flower	Petal	Pubescence	Rachis	Flower	Leaf	Fruit	Fruit	Pulp
_	rachis/ panicle	density	colour		colour	type	panicle presence	shape	colour	colour
GN ₁	16.5	Sparse	Yellow	Absent	Light greenish	Pentamerous	Absent	Ovate	Light green	Orange
GN ₂	14.9	Dense	Yellow	Absent	Greenish with pink patches	Pentamerous	Absent	Oblong	Sindhuri	Yellow
GN_3	18.6	Medium	Yellow	Absent	Greenish	Pentamerous	Absent	Ovate	Light yellow	Yellow
GN_4	19.3	Medium	Yellow	Absent	Light greenish	Pentamerous	Absent	Ovate oblong	Light yellow	Creamish yellow
${\sf GN}_{\scriptscriptstyle 5}$	21.7	Medium	Pinkish, yellow	Present	Greenish with pink patches	Penta and tetramerous	Present	Ovate	Yellow with red blush	Orange
GN_6	20.4	Medium	Pinkish, yellow	Absent	Reddish green	Penta and tetramerous	Absent	Oblong	Highly coloured	Yellow
GN ₇	22.3	Medium	Yellow	Absent	Light green	Pentamerous	Absent	Oblong	Green yellow	Orange
GN ₁₂	17.1	Medium	Yellow	Absent	Greenish	Pentamerous	Absent	Oblong	Yellowish green	Creamish yellow
GN ₁₉	15.9	Dense	Yellow	Absent	Greenish	Pentamerous	Absent	Ovate oblong	Sindhuri blush at shoulder with yellow base	Orange
CD _{0.05}	1.57	-	-	-	-		-	-	-	-

Characterization of Sucking type Mango Genotypes

Genotype	Adherence of pulp to skin	Depth of stalk cavity	Insertion of stalk	Fruit apex	Density of lenticels	Size of lenticels	Flavour	Fruit beak	Fruit sinus
GN ₁	Medium	Absent	Vertical	Obtuse	Medium	Medium	Good	Absent	Absent
GN_2	Low	Absent	Oblique	Acute	Dense	Small	Pleasant	Pointed	Slightly shallow
GN_3	Medium	Absent	Oblique	Acute	Medium	Small	Pleasant	Pointed	Slightly shallow
GN_4	High	Absent	Vertical	Acute	Sparse	Small	Pleasant	Prominent	Medium
GN_{5}	Low	Absent	Oblique	Rounded	Medium	Small	Pleasant	Prominent	Slightly shallow
GN_6	Medium	Shallow	Vertical	Obtuse	Medium	Medium	Pleasant	Prominent and pointed	Slightly shallow
GN ₇	High	Absent	Vertical	Obtuse	Medium	Small	Pleasant	Pointed	Slightly shallow
GN ₁₂	Medium	Absent	Vertical	Acute	Medium	Small	Good	Pointed	Slightly shallow
GN ₁₉	Medium	Absent	Vertical	Obtuse	Medium	Medium	Pleasant	Absent	Absent

 Table 3. Description of fruit attributes in sucking type mango genotypes.

mangoes. Fruits of GN₁ and GN₁₂ developed good flavour, taste and aroma, whereas other genotypes possessed pleasant attributes. Fruit dorsal shoulder was sloping downward in most of the genotypes except GN₅ and GN₁₂ where it narrowed abruptly; and ventral shoulder was rounded outward (Table 4). Fruit

stone shape was reniform and oblong, whereas, pulp fibres content was absent in GN_1 and GN_5 , while other possessed less or more. On the basis of fruit maturity period, sucking mangoes were classified as early season (1st week of July), mid-season (2nd & 3rd week of July) and late season (beyond 4th week of July).

Table 4. Description of fruit attributes in sucking type mango genotypes.

Genotype	Fibreness	Presence of neck	Dorsal shoulder	Ventral shoulder	Vein on stone	Stone shape	Stone fibre length	Amount of fibres on stone	Harvesting time
GN ₁	Absent	Absent	Sloping downward	Rounded upward	Slightly depressed	Reniform	Short	High	2 nd week of July
GN ₂	Present all over	Present	Sloping downward	Rounded outward	leveled surface	Oblong	Long	High	3 rd week of July
${\sf GN}_{\scriptscriptstyle 3}$	Sparsely present	Present	Sloping downward	Rounded outward	elevated	Reniform	Long	High	2 nd week of July
${\sf GN}_4$	Sparsely present	Absent	Sloping downward	Rounded downward	Slightly depressed	Oblong	Long	High	3 rd week of July
$GN_{\scriptscriptstyle{5}}$	Absent	Present	Falling Abruptly	Sloping downward	leveled surface	Oblong	Short	High	1 st week of August
GN ₆	Present	Present	Rounded downward	Rounded upward	depressed	Oblong	Medium	Medium	2 nd week of July
GN ₇	Fibrous	Absent	Sloping downward	Rounded outward	Slightly depressed	Reni form	Long	High	2 nd week of July
GN ₁₂	Fibrous all over	Absent	Falling Abruptly	Round upward	leveled surface	Reniform	Long	High	4 th week of July
GN ₁₉	Medium	Absent	Sloping downward	Rounded outward	Leveled surface	Oblong	Long	High	4 th week of July

A substantial variation in vegetative growth characters were observed in sucking type mangoes (Table 5). Maximum (598.1 m³) tree volume was observed in GN_e and minimum in GN₇. The variation in plant growth characters in different genotypes might be due to inherent character and climatic conditions of the growing region. Average fruit yield for four years was the highest (100.5 kg/tree) in GN₂ indicated regularity in bearing habit and the lowest fruit yield (34.7 kg/tree) was in GN₇. Kumar (5) observed that variation in fruit yield potential in different mango varieties is affected by additive genes and it is influenced by environmental factors. Incidence of floral malformation in GN₂ was appreciably low (4.2 %), whereas, it varied from 7.2 per cent in GN, and 15.1 per cent in GN_4 . Mishra (6) reported that malformation ranged from 0 to 58.58 per cent in different mango varieties/hybrids under Madhya Pradesh conditions and consequently, genotypes with lower incidence may primarily be selected for the resistance breeding programme.

Fruit weight also differed significantly among various genotypes (Table 5) with maximum (203.7 g) in GN₆ and minimum (77.3 g) in GN₁. Fruit weight of 185.4, 170.5 and 162.1 g was found in GN₁₉, GN₁₂ and GN₄, respectively. GN₁₂ and GN₂ recorded maximum

(1.84) and minimum (1.04) fruit length/breadth ratio, respectively. Fruit thickness ranged from 4.12 cm in GN_{12} to 6.87 cm in GN_6 . GN_4 had maximum stone length/breadth ratio. Average pulp/stone ratio in different genotypes exhibited variation from 1.81 to 2.72, being minimum in GN, and maximum in GN₂. Fruit pulp recovery per cent was found to be the highest in GN_{12} , followed by GN_2 , GN_4 and the lowest in GN₆. Chemical quality attributes among the different genotypes also depicted wide genetic variability (Table 5). Total soluble solids were the highest (20.4%) in GN_{10} , which was at par with GN_{3} , but appreciably superior than the other genotypes under study. Important sucking mangoes growing under Uttar Pradesh state had shown wide genetic variability in total soluble solids in juice and it ranged from 13.5 to 18.2 per cent (Rabbani and Singh, 9). However, maximum (0.69%) fruit juice acid content was noted in GN_a and minimum in GN_a. The variation in TSS/acid ratio ranged from 21.3 to 51.1, being minimum in GN, and maximum in GN,. Total sugars and reducing sugars content in fruit juice varied from 11.36 to 16.13 and 2.99 to 5.24 per cent, respectively. The present attributes related to sucking type of mangoes are corroborated with the findings of Nayak et al. (8) that ideal mango cultivar should possess

Table 5. Vegetative and	physico-chemical	characters in	sucking	type mango	genotypes.

Character	GN_1	GN ₂	GN ₃	GN_4	GN₅	GN ₆	GN ₇	GN ₁₂	GN ₁₉	CD _{0.05}
Tree volume (m ³)	480.5	338.4	347.4	373.7	498.8	598.1	280.1	308.9	587.1	31.4
Fruit yield (kg/tree)	37.1	41.3	100.5	48.8	57.4	85.5	34.7	60.1	83.7	16.7
Malformation (%)	11.0	7.2	4.2	15.1	13.7	7.3	11.8	12.8	9.7	2.9
Fruit weight (g)	77.3	123	142.1	162.1	124.1	203.7	126.4	170.5	185.4	10.4
Fruit length/breadth ratio	1.39	1.02	1.53	1.72	1.21	1.18	1.40	1.84	1.46	0.14
Fruit thickness (cm)	4.34	5.10	4.65	5.05	4.82	6.87	4.61	4.12	4.73	0.21
Pulp (%)	54.7	60.5	57.6	59.1	58.4	52.0	55.3	62.1	55.2	0.49
Peel (%)	15.0	17.2	19.5	18.2	16.6	23.2	15.1	14.6	21.0	0.16
Stone (%)	30.3	22.3	22.9	22.7	25.0	24.8	29.6	23.3	23.8	1.05
Stone length/breadth ratio	1.58	1.71	2.03	2.60	1.95	1.32	2.00	2.16	2.15	NS
Stone thickness (cm)	2.19	2.16	1.96	2.1	2.12	3.54	2.27	2.5	2.08	NS
Peel thickness (mm)	2.1	1.4	1.2	0.8	1.4	2.4	1.8	1.0	1.5	NS
Pulp/stone ratio	1.81	2.72	2.53	2.67	2.26	2.20	1.87	2.58	2.34	0.34
TSS (%)	17.8	18.1	20.1	17.8	18.4	14.7	19	18.9	20.4	0.49
Acidity (%)	0.43	0.35	0.43	0.57	0.51	0.69	0.40	0.49	0.45	0.03
TSS/acid ratio	41.3	51.7	46.7	31.2	36.1	21.3	47.5	38.6	45.3	4.75
Total sugars (%)	12.91	15.39	15.93	14.00	13.70	11.36	14.71	14.15	16.13	2.45
Reducing sugars (%)	4.96	5.24	3.21	4.8	4.08	2.19	2.99	4.53	3.89	0.44

distinct fruit pulp (sweetness, acidity, firmness, flavour, pulp/stone ratio) and appearance (peel colour, uniform fruit size and shape) parameters.

REFERENCES

- 1. A.O.A.C. 1980. *Official Methods of Analysis*, Associations of Official Analytical Chemists, Benjamin Franklin Station, Washington, D.C.
- Anon. 2006. IPGRI. Descriptors for Mango (Mangifera indica L.), International Plant Genetic Resources Institute, Rome, Italy.
- Damodaran, T., Singh, D.R., Kapil, D.G., Balasubramanian, A., Kavino, M. and Medhi, R.P. 2009. Genetic diversity analysis among the open pollinated clones of mango in Andaman and Nicobar islands using RAPD markers. *Indian J. Hort.* 66: 13-17.
- Gomez, K.A. and Gomez, A.A. 1984. Statistical Procedures for Agricultural Research (2nd Edn.), John Wiley and Sons Inc., New York, pp. 120-60.
- 5. Kumar, N. 2000. Yield pattern of some mango varieties. *Prog. Hort.* **32**: 103-4.
- Mishra, S.P. 2004. Reaction of different mango varieties/ hybrids to floral malformation. *J. Mycol. Pl. Path.* 34: 113-16.
- 7. Navprem, S., Jerath, N., Singh, G. and Gill, P.P.S. 2012. Physico-chemical characterization of unexploited mango diversity in sub-mountane

zone of northern India. *Indian J. Pl. Genet. Res.* **25**: 261-69.

- Nayak, D., Singh, A.K. and Srivastav, M. 2013. Estimation of genetic parameters of fruit quality traits in mango hybrid population. *Indian. J. Hort.* **70**: 13-17.
- 9. Rabbani, A. and Singh, I.S. 1989. Evaluation of local sucking mango varieties for beverage industry. *Acta Hort.* **231**: 715-21.
- 10. Selvan, M.T., Singh, R. and Singh, S.K. 2010. Physico-chemical characters of some newly evolved mango hybrids. *Indian J. Hort.* **67**: 403-6.
- Sharma, K.K. and Singh, N.P. 2011. Orchard and Soil Management, Daya Publishers, New Delhi, pp. 136-37
- Shrivastava, S.S., Asati, K.P., Patel, M.P., Tiwary, B.L. and Bihadauria, U.P.S. 1987. Evaluation of mango varieties in Madhya Pradesh. *Indian J. Hort.* 44: 197-201.
- 13. Singh, S. 2001. Evaluation of some promising mango genotypes under Sabour conditions. *Prog. Hort.* **33**: 197-203.
- 14. Westwood, M.N. 1978. *Temperate Zone Pomology*, W.H. Freeman and Company, San Francisco, 223 p.

Received: February, 2013; Revised: September, 2013; Accepted: November, 2013.