Levels and time of potassium fertilization influence soil and leaf nutrient composition and its relation with yield of litchi

P.K. Pathak^{*}, K. Majumder^{**} and S.K. Mitra

Faculty of Horticulture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, Nadia, West Bengal

ABSTRACT

The present experiment was undertaken to study the effect of different K levels and time of application on leaf and soil nutrient contents and its relation with yield in litchi cv. Bombai. Maximum yield of 91.84 kg tree⁻¹ year⁻¹ was recorded by application of 600 g K₂O tree⁻¹ year⁻¹ in the two splits at 15 days after harvest and 15 days after fruit set. The maximum yield was obtained when the soil N content was 0.001645%, P- 0.00290%, K- 0.0086%, Ca-0.2630%, Mg- 0.0565%, S- 0.0039%, B- 0.17 ppm, Cu- 3.25 ppm, Fe- 66.50 ppm, Mn- 63.55 ppm and Zn- 1.36 ppm in the month of February. These values may be used as critical soil nutrient standards at the time of panicle emergence (February) for optimum yield of litchi in the alluvial plains of West Bengal. The highest yield was also noted when the leaf nutrient content (at panicle emergence) was recorded as N = 1.61%, P = 0.16%, K = 0.81%, Ca = 0.69%, Mg = 0.32%, S = 0.13%, B = 13.00 ppm, Cu = 18.5 ppm, Fe = 284 ppm, Mn = 31.0 ppm and Zn = 42.0 ppm, showing a N: K ratio of 1: 0.50. These values may be used as critical leaf nutrient standards for litchi cv. Bombai.

Key words: Litchi, potassium, tissue nutrients, yield.

INTRODUCTION

Litchi production suffers from the wide spread problems of low and irregular bearing (Stern et al., 13). The average yield in many countries is about 5 to 8 t ha-1. Yields from the litchi orchards in India are also often low and variable. 'Bombai' the choicest commercial cultivar of litchi in West Bengal is also prone to this problem. Excessive nitrogenous fertilizers often promote vegetative flush. High K content in leaf in the month of November - December found to depress vegetative growth and induce flowering (Mitra and Sanyal, 10). Tentative leaf nutrient standards for litchi have been developed in Australia (Menzel et al., 8), China (Huang et al., 3), South Africa (Koen and Du, 5) and for India (Mitra, 9). However, no soil standards are available for litchi in India. Therefore, the present experiment was undertaken to study the effect of different K levels and time of application on leaf and soil nutrient contents and its relation with yield in litchi.

MATERIALS & METHODS

The experiment was carried out at the Horticulture Research Station, BCKV, Mondouri, West Bengal, using 27-year-old litchi trees of cv. Bombai for three consecutive years from 2006-2008. The experiment was laid out in 3^2 factors factorial design (total 9 treatments) and were replicated three times. The different levels of potassium used were S₁- 400 g,

S₂- 600 g and S₃- 800 g tree⁻¹ year⁻¹ and the time of application of potassium were (two equal splits) T1 - 15 days after fruit set and 15 days after harvesting. T₂ - 15 days after fruit set and 30 days before flowering T₃-15 days after fruit set and 60 days before flowering. Uniform dose of nitrogen at 600 g and phosphorus at 400 g tree⁻¹ year⁻¹ were applied for all the experimental trees in two splits at 15 days after fruit set and 15 days after harvesting. The treatment combinations were $S_1T_1, S_2T_1, S_3T_1, S_1T_2, S_2T_2, S_3T_2, S_1T_3, S_2T_3$ and S_3T_3 Observations were recorded on flowering and yield. The N, P, and K content of leaf were estimated every month and soil N, P and K content were estimated in the months of July, September, December and February, the macro- and micro-nutrient contents of leaf and soil were estimated during September and February. The leaf analysis were done by collecting 3rd and 4th pairs of leaves from the tip randomly collected from all direction of the tree. Dried leaf samples was digested in di-acid mixture for N, P, K, Ca and Mg determination (Jackson, 2) and B, Cu, Fe, Mn and Zn (Piper, 11), respectively. The soil samples were collected from all direction upto a depth of 100 cm.

RESULTS AND DISCUSSION

There was marked difference in yield due to nutrient treatments (Fig. 1). The data presented in Fig. 2 showed that the available soil nitrogen content increased markedly from 0.001456% in July to 0.001611% in September. Maximum available soil nitrogen content was noted 0.001628, 0.001821 and 0.001820% when fertilized with 600 g K_oO in two splits at 15 days after fruit

^{*}Corresponding author's present address: Krishi Vigyan Kendra, North 24-Parganas, West Bengal

^{**}Potash and Phosphate Institute of Canada-India Programme, Space Town Housing Complex, Block 6 Flat 1 D, VIP Road, Kolkata 700052

set and 15 days after harvest (S_2T_1) in July, September and December, respectively. The average available soil phosphorus content remains somewhat constant between July and September, thereafter increased markedly in December and finally decreases in the month of February (Fig. 3). The average soil potassium content increased with the increase in the levels of potassium application (Fig. 4).

The average organic carbon content of soil remains constant between July and September and decrease gradually thereafter and showed the minimum value in February. Application of 600g K₂O in two splits at 15 days after fruit set and 15 days after harvest (S₂T₄) showed the maximum (0.2556 and 0.2630%, respectively in September and February) calcium content of soil (Table 1). Magnesium content was noted maximum 0.0558% and 0.0574% in September and February, respectively with S₃T₂ treatment. Sulphur content of soil was noted 0.0042 and 0.0043% in September and February, respectively when 400 g K₂O applied in two splits at 15 days after fruit set and 30 days before flowering (S_1T_2) . The average soil boron content varies between 0.10 ppm (S_2T_3) and 0.21ppm $(S_1T_1 \text{ and } S_1T_3)$ treatment. Application of lower dose of K₂O (400 g) showed the maximum boron content in all the observations. The copper content of soil was noted maximum (3.35 ppm) in both the months (September and February) by application of 400 g K₂O and 800 g K₂O at 15 days after fruit set and 30 days before flowering. The iron content of soil was noted maximum (72.50 ppm) in S₂T₂ treatment (600 g K₂O) while the manganese content of soil was recorded maximum (61.55 ppm) by treatment with S₁T₂ in September and 63.55 ppm by treatment with S₂T₁ in the month of February. The zinc content of soil was noted maximum (1.55 and 1.60 ppm, respectively in September and February) by application of 400 g K₂O in two splits at 15 days after fruit set and 30 days before flowering (S₁T₂).

The average N content of leaf decreased from 1.54 per cent to 1.51 per cent between April and June, which increased slightly in July (1.68%) and then gradually declined to 1.36 per cent in the month of September. Treatment with S_2T_1 (600 g K₂O applied in two splits at 15 days after fruit set and 15 days after harvest) showed the highest N content of leaf of 1.75 per cent in January and 1.61 per cent in the month of February (Table 2). The average phosphorus content of leaf varies between 0.15 and 0.23 per cent in different months (Table 2). Application of higher level of potassium increase the potassium content in leaf The average K content of leaf was recorded maximum (0.98%) in the month of May. The leaf K content noted maximum with highest

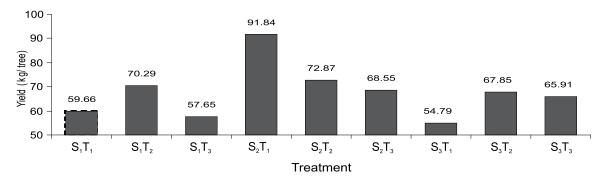


Fig. 1. Effect of different rates and timing of K₂O fertilizer application on yield.

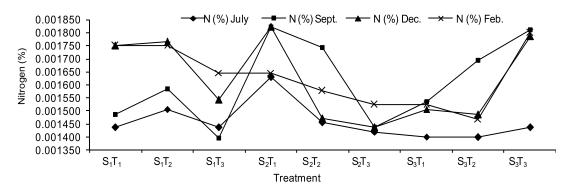


Fig. 2. Soil nitrogen content (dry weight) content due to different treatments.

Potassium Fertilization in Litchi

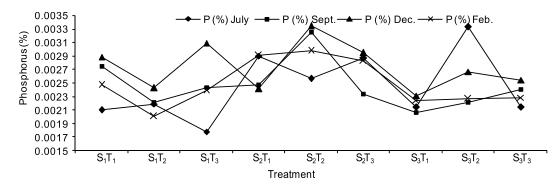


Fig. 3. Soil phosphorus content (dry weight) content due to different treatments.

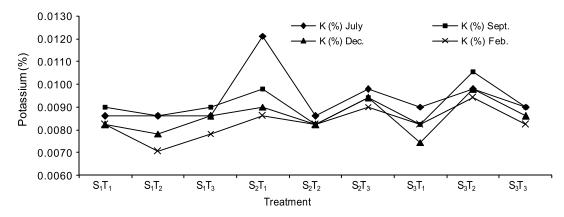


Fig. 4. Soil potassium content (dry weight) content due to different treatments.

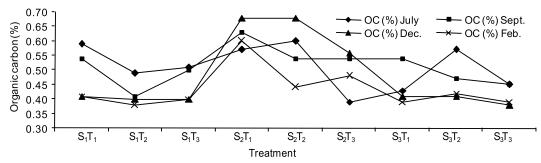


Fig. 5. Soil organic content (dry weight) content due to different treatments.

dose of potassium (800 g K_2O tree⁻¹ year⁻¹) except in the month of April (0.99%) and June (1.00%) when it was found maximum with 600 g K_2O (S_2T_3) and in May (1.08%) with 400 g K_2O tree⁻¹ year⁻¹ (S_1T_2).

The average calcium content of leaf varies between 0.57 per cent and 0.90 per cent due to different treatments. Maximum average magnesium content of leaf was noted 0.32 per cent from trees under (S_3T_1) treatment followed by 0.31 per cent in S_2T_3 treatment. Maximum magnesium content in leaf was observed as 0.29 per cent $(S_1T_1 \text{ and } S_3T_2)$ and 0.35 per cent (S_2T_3 and S_3T_2 treatment) in September and February, respectively (Table 3). The sulphur content of leaf varies between 0.13 per cent and 0.15 per cent. The concentration of sodium was noted below 0.04 per cent. Boron content was recorded maximum (20.00 and 21.00 ppm) in all the years with 400 g K₂O tree⁻¹year⁻¹. The data also indicated that the boron content of leaf decreases with increased dose of potassium application. The average copper content of leaf was noted 37.10 and 21.50 ppm in September and February, respectively with S₃T₁ treatment. The

Table 1. Soil nutrients (dry weight) content du	soil nutrieni	rs (ury w														
Treatment	t Calcium	ium	Magn	Magnesium	Sulphur	hur	Boron	on	Copper	per	Iron	n	Manga	Manganese	Zinc	U
	(%)	(9	5)	(%)	6)	(%)	(mqq)	(m)	(mqq)	(m	(mdd)	(m	(mqq)	m)	(mqq)	n)
	Sept.	Feb.	Sept.	Feb.	Sept.	Feb.	Sept.	Feb.	Sept.	Feb.	Sept.	Feb.	Sept.	Feb.	Sept.	Feb.
S,T,	0.2412	0.2458	0.0528	0.0546	0.0035	0.0036	0.20	0.21	2.80	2.90	52.00	56.02	53.00	53.00	1.25	1.25
S_1T_2	0.2286	0.2332	0.0511	0.0534	0.0042	0.0043	0.20	0.20	3.35	3.35	56.50	62.30	61.55	59.50	1.55	1.60
S_1T_3	0.2412	0.2436	0.0530	0.0539	0.0034	0.0037	0.20	0.21	2.90	2.90	54.50	57.63	33.20	34.93	1.00	1.25
$S_{2}T_{1}$	0.2556	0.2630	0.0552	0.0565	0.0038	0.0039	0.15	0.17	3.25	3.25	66.50	66.50	59.50	63.55	1.36	1.36
S_2T_2	0.2394	0.2438	0.0498	0.0524	0.0031	0.0032	0.15	0.17	3.15	3.25	72.50	72.50	36.80	39.62	1.10	1.10
S_2T_3	0.2502	0.2546	0.0522	0.0540	0.0022	0.0023	0.10	0.10	2.90	2.90	50.00	54.46	23.65	23.65	1.10	1.15
$S_{3}T_{1}$	0.2466	0.2492	0.0515	0.0552	0.0025	0.0025	0.10	0.15	2.45	2.45	53.00	56.13	20.90	23.65	1.10	1.15
$S_{3}T_{2}$	0.2502	0.2572	0.0558	0.0574	0.0024	0.0024	0.10	0.12	3.35	3.35	58.00	56.66	21.70	21.70	1.10	1.10
$S_{3}T_{3}$	0.2484 0.2486	0.2486	0.0523	0.0523 0.0551	0.0031	0.0032	0.10	0.15	2.95	3.05	63.50	63.50	40.50	42.12	1.00	1.10
S ₁ - 400 g	S_1 - 400 g K_2O tree ⁻¹ year ⁻¹	¹ year ¹	ц,	${\sf T}_{_1}$ - 15 days after fruit set &15 days after harvest	s after fru	iit set &1!	5 days a	fter harve	st							
S ₂ - 600 g	$\rm S_2$ - 600 g $\rm K_2O$ tree 1 year 1	¹ year¹	\exists_2	$T_{\rm 2}$ - 15 days after fruit set & 30 days before flowering	s after fru	iit set & 3	30 days	before flo	wering							
S ₃ - 800 g	S_3 - 800 g K_2O tree ⁻¹ year ⁻¹	¹ year¹	ц	$T_{\rm 3}$ - 15 days after fruit set & 60 days before flowering	s after fru	lit set & 6	30 days	before flo	wering							
N at 600 (N at 600 g and P_2O_5 at 400g tree ⁻¹ year ⁻¹ (fixed) applied at 15 days after fruit set and 15 days after harvest	, at 400g	tree ⁻¹ y	ear¹ (fixe	d) appliec	d at 15 di	ays after	fruit set	and 15 c	lays afte	r harvest					
Table 2. N	Table 2. Monthly leaf nitrogen, phosphorus and potassium content (% dry weight) due to different treatments.	f nitrogei	n, phosp	horus and	d potassit	um conter	nt (% dry	/ weight)	due to d	ifferent tı	reatments					
Treatment	April	May	۱ ۲	June	July	Aug.	0)	Sept.	Oct.	Nov.		Dec.	Jan.	Feb.		March

it treatments.
ght) content due to different tre
요
due
content
veight)
(dry v
. Soil nutrients (dry weight) content d
Soil
÷
e

Treatment	April	Ţ	-	May		٦U	June		July			Aug.		Ň	Sept.		Oct.	Ŀ		Nov.			Dec.		Jan.	L		Feb.		2	March	
	⊾ Z	¥	z	٩	¥	R N	×	z	٩	¥	z	٩	×	z	Ч Х	х Х	₫.	¥	z	٩	×	z	٩	×	R N	×	z	٩	×	z	٩	¥
S,T,	1.23 0.21 0.93 1.11 0.21 0.98 1.33 0.22 0.81 1.	1 0.93	1.11 (0.21 0	.98 1.	33 0.2	22 0.8	1 1.3	5 0.16	3 0.83	1.45	0.18	0.78	.30 0.	.16 0.8	84 1.4	12 0.2	1 0.84	4 1.26	0.22	. 77.0	.40 0	0.23 0	80 1.	.35 0.16 0.83 1.45 0.18 0.78 1.30 0.16 0.84 1.42 0.21 0.84 1.26 0.22 0.77 1.40 0.23 0.80 1.47 0.18 0.81 1.42 0.16 0.79 1.37 0.21 0.88	8 0.8	1 1.42	2 0.16	0.79	1.37	0.21	0.88
S_1T_2	1.54 0.16 0.87 1.58 0.19 1.08 1.44 0.20 0.90 1.	6 0.87	1.58 (0.19 1.	.08 1.	44 0.2	20 0.9	0 1.6	5 0.17	7 0.77	1.58	0.18	0.78	I.16 0.	.13 0.8	97 1.4	12 0.1	7 0.80	0 1.82	0.19	0.78	1.86 0	0.18 0	.78 1.	.65 0.17 0.77 1.58 0.18 0.78 1.16 0.13 0.87 1.42 0.17 0.80 1.82 0.19 0.78 1.86 0.18 0.78 1.63 0.16 0.84 1.59 0.16 0.80 1.61 0.18 0.84	6 0.8	4 1.59	0.16	0.80	1.61	0.18	0.84
S_1T_3	1.75 0.14 0.84 1.72 0.23 0.90 1.63 0.25 0.93 1	4 0.84	1.72 (0.23 0	.90 1.	63 0.2	25 0.9	1.7 ²	4 0.15	3 0.93	1.59	0.19	0.90	1.38 0.	.16 0.5	93 1.6	1 0.1	8 0.81	1 1.58	0.20	0.81	1.61 0	J.18 G	.87 1.	.74 0.18 0.93 1.59 0.19 0.90 1.38 0.16 0.93 1.64 0.18 0.81 1.58 0.20 0.81 1.61 0.18 0.87 1.45 0.18 0.93 1.42 0.19 0.82 1.66 0.21 0.90	8 0.9	3 1.42	2 0.19	0.82	1.66	0.21	06.0
S_2T_1	1.61 0.19 0.96 1.72 0.13 0.94 1.45 0.17 0.85 1.68 0.16 0.81 1.56 0.19 0.78 1.48 0.14 0.79 1.63 0.19 0.82 1.68 0.17 0.80 1.82 0.16 0.78 1.75 0.17 0.89 1.61 0.16 0.81 1.51 0.16 0.94	9 0.96	1.72 (0.13 0	.94 1.	45 0.	17 0.8	1.6	8 0.16	3 0.81	1.56	0.19	0.78	1.48 0.	.14 0.	79 1.6	33 0.1	9 0.82	2 1.68	0.17	0.80	1.82 0	J.16 C	.78 1.	75 0.1	7 0.89	9 1.61	0.16	0.81	1.51	0.16	0.94
S_2T_2	1.68 0.19 0.90 1.63 0.18 0.89 1.72 0.22 0.88 1	9 0.90	1.63 (0.18 0	.89 1.	72 0.2	22 0.8	8 1.6	0 0.20	0.93	1.58	0.20	0.87	1.11 0.	.18 0.{	35 1.3	32 0.2	1 0.86	3 1.40	0.19	0.83	1.47 C	0.21 0	.89 1.	.60 0.20 0.93 1.58 0.20 0.87 1.11 0.18 0.85 1.32 0.21 0.86 1.40 0.19 0.83 1.47 0.21 0.89 1.61 0.22 0.86 1.56 0.20 0.83 1.62 0.21 0.89	2 0.8	6 1.56	3 0.20	0.83	1.62	0.21	0.89
S_2T_3	1.54 0.18 0.99 1.44 0.23 1.04 1.32 0.33 1.00 1.71 0.15 1.03 1.56 0.16 0.87 1.43 0.17 0.93 1.70 0.17 0.86 1.51 0.17 0.84 1.51 0.20 0.91 1.24 0.20 0.85 1.31 0.18 0.81 1.16 0.19 0.97	8 0.99	1.44 (0.23 1	.04 1.	32 0.:	33 1.0	0 1.7	1 0.15	5 1.03	1.56	0.16	0.87	1.43 0.	.17 0.{	93 1.7	0 0.1	7 0.86	3 1.51	0.17	0.84	1.51 0	0.20 0	.91 1.	24 0.2	0 0.8	5 1.31	0.18	0.81	1.16	0.19	0.97
$S_{3}T_{1}$	1.75 0.16 0.98 1.90 0.14 0.96 1.79 0.24 0.91 1.	6 0.98	1.90 (0.14 0	.96 1.	79 0.2	24 0.9	11 1.8(0 0.17	0.96	1.70	0.18	0.00	1.51 0.	.14 1.(01 1.5	8 0.1	6 0.85	9 1.79	0.18	0.86	1.44 0	J.18 C	.84 1.	80 0.17 0.96 1.70 0.18 0.90 1.51 0.14 1.01 1.58 0.16 0.89 1.79 0.18 0.86 1.44 0.18 0.84 1.42 0.21 0.95 1.38 0.19 0.82 1.44 0.19 0.90	1 0.9	5 1.38	3 0.19	0.82	1.44	0.19	06.0
$S_{3}T_{2}$	1.36 0.16 0.84 1.44 0.18 0.98 1.40 0.28 0.88 1	6 0.84	1.44 (0.18 0	.98 1.	40 0.2	28 0.8	8 1.6	9 0.15	5 0.97	1.60	0.17	0.87	1.32 0.	.14 0.5	97 1.5	33 0.1	9 0.84	4 1.54	: 0.20	0.82	0 69.1	J.19 C	.87 1.	.69 0.15 0.97 1.60 0.17 0.87 1.32 0.14 0.97 1.53 0.19 0.84 1.54 0.20 0.82 1.69 0.19 0.87 1.61 0.19 0.99 1.45 0.20 0.88 1.42 0.19 0.94	9 0.9	9 1.45	5 0.20	0.88	1.42	0.19	0.94
$S_{3}T_{3}$	1.40 0.19 0.96 1.46 0.18 1.01 1.49 0.21 0.99 1	96.0 6	1.46 (0.18 1	.01 1.	49 0.2	21 0.9	9 1.8	9 0.17	7.11	1.65	0.21	1.02	.42 0.	.15 1.	15 1.7	5 0.1	8 1.05	5 1.58	0.23	. 96.0	.68 0	0.21 0	.92 1.	89 0.17 1.11 1.65 0.21 1.02 1.42 0.15 1.15 1.75 0.18 1.05 1.58 0.23 0.96 1.68 0.21 0.92 1.65 0.22 0.84 1.53 0.19 0.88 1.47 0.19 1.02	2 0.8	4 1.53	3 0.19	0.88	1.47	0.19	1.02
$S_1 - 400 \text{ g } K_2 \text{ O } \text{ tree}^1 \text{ year}^1$ $T_1 - 15 \text{ days after fruit set & 15 days after harvest}$ $S_2 - 600 \text{ g } K_2 \text{ O } \text{ tree}^1 \text{ year}^1$ $T_2 - 15 \text{ days after fruit set & 30 days before flowering}$ $S_3 - 800 \text{ g } K_2 \text{ O } \text{ tree}^1 \text{ year}^1$ $T_3 - 15 \text{ days after fruit set & 60 days before flowering}$ N at 600 g and P2O5 at 400g tree ⁻¹ year ⁻¹ (fixed) applied at 15 days after fruit set and 15 days after harvest	g K ₂ O g K ₂ O g K ₂ O g and	tree tree I P2C	¹ yea ¹ yea ¹ yea)5 at	ar1 ar1 400ç	g tre	e' - ' ' '	15 15 15 15 ear ¹	days days days (fixe	s afte s afte s afte afte d) a	er fru er fru er fru pplie	lit se lit se lit se it at	et & 1 et & 3 15 15	5 da 30 di 50 di Jays	ys at ays t ays t after	$T_{\rm i}$ - 15 days after fruit set &15 days after harvest $T_{\rm z}$ - 15 days after fruit set & 30 days before flowering $T_{\rm 3}$ - 15 days after fruit set & 60 days before flowering $r^{\rm i}$ year^{\rm i} (fixed) applied at 15 days after fruit set and 1	iarve e flov e flov t set	st werir werir and	15 c	days	afte	r har	vest										

Indian Journal of Horticulture, March 2012

ment Calcium (%) Sept Feb. 0.90 0.90 0.48 0.65 0.53 0.67 0.54 0.69 0.48 0.71 0.57 0.81	Magnesium			-		•		(i	
(%) Sept. Feb. 0.90 0.90 0.48 0.65 0.53 0.67 0.54 0.69 0.48 0.71 0.57 0.81			Sulphur	Sodiu	Sodium (%)	Boron	Boron (ppm)	Copper (ppm)	(mdd)	lron	Ľ	Manganese	anese	ZINC	с С
Sept. Feb. 0.90 0.90 0.48 0.65 0.53 0.67 0.54 0.69 0.48 0.71 0.57 0.81	(%)		(%)							1d)	(mdd)	(mqq)	(m)	(mqq)	(m
0.90 0.90 0.48 0.65 0.53 0.67 0.54 0.69 0.48 0.71 0.57 0.81	Sept. Feb.	o. Sept.	. Feb.	Sept.	Feb.	Sept.	Feb.	Sept.	Feb.	Sept.	Feb.	Sept.	Feb.	Sept.	Feb.
0.48 0.65 0.53 0.67 0.54 0.69 0.48 0.71 0.57 0.81	0.29 0.31	1 0.13	0.14	0.00	0.01	20.00	21.00	14.20	14.20	278.0	280.0	32.00	32.00	47.00	48.00
0.53 0.54 0.48 0.57	0.26 0.30	0 0.14	. 0.14	0.00	0.01	20.00	20.00	12.60	13.50	139.0	145.0	29.00	30.00	38.00	32.00
0.54 0.48 0.57	0.26 0.29	9 0.13	0.14	0.00	0.02	15.00	16.00	14.50	14.90	126.0	149.0	26.00	28.00	30.00	38.00
0.48 0.57 0.50	0.26 0.32	2 0.13	0.13	0.00	0.00	12.00	13.00	18.50	18.50	284.0	284.0	31.00	31.00	42.00	42.00
0.57	0.25 0.30	0 0.13	0.14	0.00	0.01	15.00	15.00	13.00	14.00	149.0	156.0	21.00	24.00	35.00	48.00
0 50	0.27 0.35	5 0.14	. 0.13	0.00	0.02	15.00	16.00	17.50	18.50	173.0	178.0	30.00	30.00	63.00	74.00
	0.29 0.35	5 0.15	0.15	0.03	0.04	8.00	12.00	37.10	21.50	358.0	328.0	33.00	33.00		89.00
$S_{3}T_{2}$ 0.57 0.67	0.27 0.29	9 0.14	. 0.14	0.01	0.01	14.00	15.00	12.70	14.20	176.0	210.0	29.00	28.00	40.00	48.00
S ₃ T ₃ 0.59 0.71	0.26 0.28	8 0.14	. 0.13	0.02	0.02	15.00	15.00	15.90	16.20	244.0	286.0	24.00	26.00	54.00	52.00
$S_1 - 400 \text{ g } \text{K}_2 \text{O} \text{ tree}^1 \text{ year}^1$	т, - ,	r, - 15 days a	after fruit set &15 days after harvest	set &15	days al	ter harve	est								
S_2 - 600 g K_2O tree ⁻¹ year ⁻¹	T_2	15 days	$_{\rm 2}^{\rm 2}$ - 15 days after fruit set & 30 days before flowering	set & 30) days t	efore flo	wering								
S_3 - 800 g K_2O tree ⁻¹ year ⁻¹	`- "⊥	- ₃ - 15 days a	after fruit set & 60 days before flowering	set & 60) days t	efore flo	wering								
N at 600 g and P_2O_5 at 400g tree ⁻¹ year ⁻¹ (fixed) applied at 15 days after fruit set and 15 days after harvest	Dg tree-1 yea	r1 (fixed)	applied ;	at 15 day	/s after	fruit set	and 15	days af	ter harve	est					
с И	,)				_			•							

Table 3. Leaf nutrients (dry weight) content due to different treatments.

Potassium Fertilization in Litchi

maximum iron content of leaf was recorded (358.0 and 328.0 ppm in September and February, respectively) in S_aT_a treatment. The zinc content of leaf was recorded 124.00 and 89.00 ppm in September and February, respectively by application of 800 g K₂O in two splits at 15 days after fruit set and 15 days after harvest ($S_{2}T_{4}$). The results showed a positive correlation (r = 0.6267) between N: K ratio of leaf and yield. Roy et al. (10) studied the correlation between litchi yield (cv. Bombai) and leaf N, P and K levels. Yield was related (r = 0.41-0.43, P < 0.05) to leaf N at flowering and at harvest and to leaf K at harvest. Yield was also correlated (r = 0.44, P < 0.05) with available soil K. There was no association between yield and P supply. Zhuang et al. (14) showed that poor fruit set in 'Sovey Tung' litchi was associated with low levels of NO₂-N (<960 μ g g⁻¹), P (<0.5 mg g^{-1}) and K (<11.6 mg g^{-1}) in the leaf prior to and after fruit set. Kobayashi and McLean (4) related litchi yield in Hawaii to leaf and soil nutrient levels. Fruit production was found positively correlated with soil pH (range (5.4-5.1) and leaf N (maximum of 13.5 mg q-1). Koen and Smart (6) indicated maximum yields of litchi when leaf N ranged from 1.35 to 1.47 per cent. Menzel et al. (7) indicated that maximum leaf flushing was suppressed and potential yield increased when leaf N fell below 1.85 per cent.

In the present experiment maximum yield of 91.84 kg tree⁻¹year⁻¹ was recorded by application of 600 g K₂O tree-1year-1 in the two splits at 15 days after harvest and 15 days after fruit set. The maximum yield was obtained when the soil N content was 0.001645%, P-0.00290%, K- 0.0086%, Ca- 0.2630%, Mg- 0.0565%, S- 0.0039%, B- 0.17 ppm, Cu- 3.25 ppm, Fe- 66.50 ppm, Mn- 63.55 ppm and Zn- 1.36 ppm in the month of February. These values may be used as critical soil nutrient standards at the time of panicle emergence (February) for optimum yield of litchi cv. Bombai in the alluvial plains of West Bengal. The highest yield (91.84 kg tree-1year-1) was also noted when the leaf nutrient content (at panicle emergence) was recorded as N = 1.61%, P = 0.16%, K = 0.81%, Ca = 0.69%, Mg = 0.32%, S = 0.13%, B = 13.00 ppm, Cu = 18.5 ppm, Fe = 284 ppm, Mn = 31.0 ppm and Zn = 42.0 ppm, showing a N: K ratio of 1: 0.50. These values may be used as critical leaf nutrient standards for litchi cv. Bombai. These leaf nutrient standards are comparable with the values proposed form China (Chen et al., 1).

REFERENCES

- Chen, D.X., Chen, J.S., Zhang, F.B. and Yang, S.H. 1998. Effectiveness of nitrogen and potash fertilizers on litchi. *Guangdong Agril. Sci.* 2: 27-29.
- 2. Jackson, M.L. 1967. *Soil Chemical Analysis.* Prentice Hall of India, New Delhi.

- Huang, W.T., Huang, Y.M., Hsiang, W.M., Chang, M.H., Lin, M.L., Wang, C.H. and Wu, W.L. 1998. Nutrition studies on lychee (*Litchi chinensis* Sonn.) orchards in central Taiwan. *J. Agric. Res. China*, 47: 388-407.
- Kobayashi, K.O. and McLean, R.M. 1985. Relationship of yield of lychee to tissue and soil analysis and weather. *HortSci.* 20: 607.
- Koen, T.J. and Du, P.S.F. 1993. Optimal leaf analysis norms for litchis. *Inligtings Bulletin -Instituut-vir-Tropiese-en-Subtropiese-Gewasse*, 248: 19-21
- Koen, T.J. and Smart, G. 1983. Leaf analysis in litchi. *Inf. Bull. Citrus Sub-tropical Fruit Res. Inst.* No. **117**, pp. 2.
- Menzel, C.M., Carseldine, M.L. and Simpson, D.R. 1988. Crop development and leaf nitrogen in litchi in subtropical Queensland. *Australian J. Exp. Agric.* 28: 793-800.
- Menzel, C.M., Carseldine, M.L., Haydon, G.F. and Simpson, D.R. 1992. A review of existing and proposed new leaf nutrient standards for lychee. *Scientia Hort.* 49: 33-53.
- Mitra, S.K. 2002. Overview of lychee production in the Asia-Pacific region. In: Lychee Production in the Asia-Pacific Region. Papademetriou, M.K. and Dent, F.J. (Eds.), FAO, UN., Bangkok, Thailand, pp. 5-13.
- Mitra, S.K. and Sanyal, D. (2001). Effect of cinturing and chemicals on flowering of litchi. *Acta Hort.* 558: 243-46
- 11. Piper, C.S. 1944. *Soil and Plant Analysis*. International Science Publishers Inc. New York.
- 12. Roy, R.N., Ray, D.P. and Mukherjee, S.K. 1984. Orchard efficiency analysis of litchi. *Indian J. Hort.* **41**: 16-21.
- Stern, R.A., Stern, D., Harpaz, M. and Gazit, S. 2000. Applications of 2,4,5-TP, 3,5,6-TPA and combinations thereof increases lychee fruit size and yield. *HortSci.* 35: 661-64.
- Zhung, W., Jenah, Y., Lin, Z., Chen, R. and Chen, J. 1988. A resume of research conducted on the subject of how to promote fruit bearing in mature lychee tree. *J. Fujian Agric. Coll.* **12**: 297-305.

Received: April, 2011; Revised: December, 2011; Accepted: January, 2012