Effect of fertigation on nutrient uptake on anthurium

Jhuma Das, Madhumita Choudhury Talukdar^{*} and Pradip Mahanta

Department of Horticulture, Assam Agricultural University, Jorhat 785 013, Assam

ABSTRACT

An investigation was carried out in the Experimental Farm, Department of Horticulture, AAU, Jorhat under agro-shade net house during 2007-2008, to study the nutrient uptake by anthurium plants under fertigated condition. The experiment was conducted in Strip Plot Design with four replications. The treatments consisted of four levels of fertigation, *viz.*, 100% (F_1), 75% (F_2) and 50% (F_3) fertilizer dose of N & K (200 kg N/ha & 250 kg K/ha) through drip and 100% (F_0) fertilizer dose of N & K (200 kg N/ha & 250 kg K/ha) as broadcasted with two varieties, *viz.*, Fire (V₁) and Carnival (V₂). Among the fertigation levels, F_1 resulted in highest N (0.86, 2.29) g/m², P (0.136, 0.251) g/m² and K (1.58, 3.11) g/m² uptake, whereas F_2 recorded in highest Ca uptake (0.83, 2.28) g/m² by plants in vegetative and blooming stages respectively. Similarly, highest dry matter production (18.95 and 26.76) g/pl by plants in both stages and flower (13.97g/pl) was revealed in F_1 levels and was significantly superior to other levels. N, P, K and Ca uptake in flower (0.85, 0.111, 1.14 and 0.59 g/m²) was also significantly highest in F_1 level. Among the interactions, F_1V_2 showed the highest P uptake (0.255 g/m²) in plants and N, P, K, Ca uptake (1.07, 0.126, 1.31 and 0.71 g/m², respectively) in flowers, whereas the highest dry matter production (16.3 g) was exhibited by F_1V_1 available N, P_2O_5 and K_2O in the growing media was recorded highest in F_1 level. Among the treatment combinations, F_1V_1 resulted in high N content (0.063 g/100 g) whereas F_1V_2 resulted in highest P_2O_5 content (0.0079 g/100 g) and K_2O content (0.24 g/100 g) of the growing media.

Key words: Anthurium, fertigation, nutrient uptake, growing media.

INTRODUCTION

Anthurium is an important tropical ornamental plant grown for its colourful spathe and attractive foliage. They are very popular as cut flowers for their beauty, bold and long lasting qualities which are essential pre-requisites for any floral arrangement. Due to the increasing popularity it occupies 9th position among the cutflowers in the international market with global trade valued US\$ 50 million (Rajeevan *et al.*, 5).

Anthurium andreanum is perennial, semiterrestrial, evergreen and herbaceous plants with oblong, heart shaped leaves and spathe. The 'flower' consists of a colourful modified leaf called the spathe and hundreds of small spirally arranged bisexual flowers on a pencil like structure called spadix, arising from the base of the spathe. These plants require generous watering and adequate amount of nutrients for its proper growth and flowering. Deficiencies of nutrients are associated with low yield, reduced stem length and small flowers. Fertigation is the technique of applying nutrients along with irrigation water directly at the site of active root zone resulting in quality production. Thus, keeping in view the present investigation was conducted to study the nutrient uptake by the plants under fertigated conditions.

MATERIALS AND METHODS

The experiment was conducted at experimental farm of Department of Horticulture, AAU, Jorhat under Agro shade net house, each having a size of 100 m² during the year 2007-08. Six-month-old tissue cultured plantlets were grown at a spacing of 45 cm × 45 cm in the substrate consisting of 2 parts of coco peat 1 part coconut husk, 1 part charcoal and 1/4th part brick pieces laid on to the bottom of the bed. The experiments was laid in strip plot design and replicated four times. The treatment consisted of four levels of fertigation: 100% (F_1), 75% (F_2) and 50% (F_3) of fertilizer dose of N and K as broadcast (220 kg N/ha or 20 g/m²⁾ and 250 kg/ha or 25 g/m² with two varieties V₁ (Fire) and V₂ (Carnival). Uniform application of P (100 kg/ha or 10° g/m²) and CaCO₃ (5 g/pl) was applied per month. Fertigation was given per week through drip system one month after planting and irrigation was given daily by replenishing 100% of the previous day evaporation (on the basis of USWB pan evaporimeter). In the drip irrigation system, 12 mm diameter LLDPE (Linear low density polyethylene) pipes were used as laterals where pressure compensating type, 2 lph size dripper were fitted. The laterals were fitted around each plant. Single dripper was used to irrigate each plant. The growing media was analyzed initially before planting and after planting using standard analytical methods. Leaf and flower nutrient analysis were determined by

^{*}Corresponding author's E-mail: madhumita_aau@rediffmail.com

micro-Kjeldahl method for total N, Vanado molybdate method for total P and flame photometric method for total K and Ca. The initial physico-chemical properties of the growing media are presented in Table 1.

RESULTS AND DISCUSSION

From the data presented in Table 2, it is seen that different levels of fertigation and varieties significantly influenced the N uptake by plants. In vegetative stage among the fertigation levels, F_1 (0.86 g/m²) recorded maximum N uptake, which was significantly superior the to others. In blooming stage also F_1 (2.29 g/m²) recorded the highest value. On other hand among the varieties, in both the stages, V_2 (0.63 and 1.63 g/m²) were significantly higher than V_1 (0.49 and 1.41 g/m²) respectively. However, their interaction effect was non-significant in both vegetative and blooming stage. This increase in N uptake might be due to increase in levels of N in fertigation that envisages the plant to grow better and produce higher yield.

The data with respect to P uptake by plant revealed that in both the stages P uptake was significantly influenced by difficult fertigation level and varieties. Among the fertigation levels, F_1 (0.136 g/m²) differ significantly with other levels. Similarly at blooming stage also F_1 (0.251 g/m²) resulted in higher P uptake. Among the varieties, V_2 (0.101 and 0.171 g/m² was significantly higher than V_1 (0.084 and 0.162 g/m²) respectively. Again among the fertigation treatments, F_1V_2 (0.146 g/m²) differ significantly from the interactions during vegetative stage. At blooming stage F_1V_1 (0.247 g/m²) and F_1V_2 (0.255 g/m²) were at par with each other. This might be attributed to the desirable pH due to the Ca application thereby increasing the available and uptake of P.

The highest K uptake by plant was recorded in F_1 (1.58 g/m²) during vegetative stage, which was significantly superior to other fertigation levels. Similarly, during blooming stage F_1 (3.11 g/m²) recorded maximum K uptake, which was also significantly higher to other levels. Between the varieties and among the interactions no significant effect was observed at both the stages (Table 3). This might be attributed due to the increase in the K levels in fertigation resulting in better utilization of K due to most effective soluble form.

Data from the Table 2, revealed that among the fertigation levels, F_2 (0.83 and 2.28 g/m²) recorded the highest Ca uptake, which was at per with F_1 (0.80 and 2.12 g/m²) in both the stage respectively. Between the varieties, V_2 (0.62 g/m²) was significant superior to V_1 (0.54 g/m²) and among interactions F_1V_2 (0.95 g/m²) recorded the maximum value in vegetative stage. On other hand, no significant difference was observed due to the varieties and their interactions with different fertigation levels.

Table 2 again indicates that the dry matter production by the plant and the flower is significantly in influenced by fertigation. Similar results were also observed by Ashok and Rengasamy (1) in rose and Treder (3) in Oriental lily.

The highest dry matter production by plant was revealed in F₁ levels (18.95 and 26.76 g/pl) at vegetative and blooming stages. Between the varieties, V₂ (14.96 and 22.16 g/pl) recorded significantly higher value than V₁ (12.63 and 20.23 g/pl) in both the stages. However their interactions were not significant. Again the dry matter production by flower was greatly influenced by different levels of fertigation but not by varieties. Among the fertigated plants, F₁ (13.97 g/pl) showed highest dry matter production, which was significantly superior to other levels.

Among the interactions, F_1V_1 (16.30 g/pl) recorded the highest dry matter production in the flower. The influence of fertigation on dry matter production

Particulars	Growing media depth (cm)		
	0-15	15-30	
Maximum water holding capacity (%)	618.45	607.31	
Bulk density	0.308	0.322	
Porosity (%)	79.78	79.09	
Particle density (g/m ²)	1.523	1.540	
pH	6.220	6.210	
Organic carbon (%)	0.663	0.620	
Available N (%)	0.0168	0.0163	
Available P ₂ O ₅ (%)	0.0034	0.0031	
Available K ₂ O (%)	0.051	0.052	

Table 1. Physico-chemical properties of growing media.

Treatment	Dry mat	tter producti	ion (g/pl)	Z	uptake (g/r	n²)	٩	uptake (g/r	n²)	¥	uptake (g/r	n²)
	Vegetative stage	Blooming	Full bloom	Vegetative	Blooming	Full bloom	Vegetative stage	Blooming	Full bloom	Vegetative	Blooming	Full bloom stage
Fertigation [evel	0	0620	0,650	06550	0620	0,650	2	0.650	0	0	06500
Ъ	11 54	18.58	6 01	042	1	0.31	0 074	0 130	0.032	0.65	168	0.36
° L					- c	- 1			0.00		- c) ,
Ť	18.95	26.76	13.97	0.86	2.29	0.85	0.136	0.251	0.111	1.58	3.11	1.14
\mathbb{F}_2	14.91	22.49	9.12	0.64	1.72	0.53	0.107	0.180	0.061	1.14	2.40	0.67
ц	9.78	16.97	4.87	4.33	0.89	0.22	0.054	0.107	0.022	0.47	1.22	0.24
CD at 5%	0.92	0.92	0.75	0.05	0.08	0.06	0.009	0.010	0.006	0.13	0.09	0.08
Variety												
>-	12.63	20.23	8.62	0.49	1.41	0.04	0.084	0.162	0.052	06.0	2.06	0.52
< 2 2	14.96	22.16	8.37	0.63	1.63	0.56	0.101	0.171	0.060	1.02	2.14	0.68
CD at 5%	1.04	0.48	NS	0.08	0.03	0.03	0.008	0.006	0.002	NS	NS	0.03
Interaction												
F ₀ V1	10.52	17.70	5.30	0.36	1.07	0.27	0.068	0.128	0.034	0.64	1.65	0.31
F_<	17.59	25.80	16.30	0.78	2.16	0.63	0.127	0.247	0.095	1.48	3.06	0.97
F_2V_1	13.25	21.43	8.91	0.54	1.63	0.51	060.0	0.168	0.060	1.03	2.29	0.64
F_{3}^{-1}	9.16	15.99	3.95	0.29	0.78	0.18	0.053	0.107	0.020	0.47	1.26	0.18
F_0V_2	12.55	19.45	6.72	0.47	1.26	0.35	0.080	0.132	0.031	0.67	1.70	0.42
F_1V_2	20.32	27.71	11.65	0.94	2.42	1.07	0.146	0.255	0.126	1.68	3.17	1.31
F_2V_2	16.57	23.55	9.33	0.75	1.82	0.55	0.124	0.192	0.061	1.26	2.51	0.70
$F_{3}V_{2}$	10.40	17.94	5.80	0.37	1.01	0.26	0.056	0.107	0.024	0.47	1.19	0.30
CD at 5%												
V × F	NS	NS	1.06	NS	NS	0.07	0.014	0.011	0.008	NS	NS	0.08
F × <	NS	NS	1.08	NS	NS	0.08	0.014	0.012	0.009	NS	NS	0.10

Table 2. Dry matter production and nutrient uptake by anthurium.

Indian Journal of Horticulture, December 2012

Effect of Fertigation on Nutrient Uptake in Anthurium

Treatment	pH of the growing media	Organic carbon content (%)	Available N (g/100 g)	Available P ₂ O ₅ (g/100 g)	Available K ₂ O (g/100 g)
Fertigation Level					
F _o	6.41	1.77	0.048	0.0054	0.17
F ₁	6.35	1.82	0.061	0.0073	0.22
F ₂	6.39	1.82	0.059	0.0071	0.19
F ₃	6.44	1.76	0.036	0.0048	0.11
CD at 5%	0.02	0.03	0.0006	0.00020	0.005
Variety					
V ₁	6.39	1.80	0.052	0.0058	0.16
V ₂	6.35	1.79	0.050	0.0065	0.18
CD at 5%	NS	NS	0.0004	0.0024	0.004
Interaction					
F ₀ V ₁	6.41	1.78	0.048	0.0053	0.16
F ₁ V ₁	6.35	1.83	0.063	0.0067	0.21
F_2V_1	6.39	1.83	0.061	0.0065	0.17
$F_{3}V_{1}$	6.43	1.76	0.035	0.0046	0.11
F_0V_2	6.41	1.77	0.047	0.0056	0.18
F_1V_2	6.36	1.82	0.059	0.0079	0.24
F_2V_2	6.39	1.81	0.057	0.0076	0.20
$F_{3}V_{2}$	6.44	1.76	0.036	0.0049	0.11
CD at 5%					
V × F	NS	NS	0.009	0.00029	0.004
F × V	NS	NS	0.009	0.00028	0.006

 Table 3. Nutrient status of the growing media post harvest of anthurium.

might be due to better root and shoot growth, improved photosynthetic efficiency and in turn shigher accumulation of carbohydrates in plants.

Results with respect to N uptake by flower (Table 2) it is seen that the among the fertigated plants F, (0.85 g/m²) recorded maximum and significantly higher value. Between the varieties, V₂ (0.56 g/m²) showed higher N uptake by flower than V_{1} (0.40 g/m²). Among the interactions, F_1V_2 (1.07 g/m²) observed highest N uptake. The data recorded on P uptake by flower reveal that F_1 (0.111 g/m²) resulted in significantly higher value. Between the varieties V_2 (0.06 g/m²) was maximum within fertigation treatments, F_1V_2 (0.126 g/m²) differed significantly. The highest K uptake by flower was revealed in F_1 levels (1.14 g/m²) as compared to other levels. Between the varieties, V₂ (0.68 g/m²) was significantly higher than V₄ (90.52 g/ m^2) in K uptake. Among the interactions, F_1V_2 (1.31 g/ m²) was significantly higher than F_1V_1 (0.97 g/m²).

There was significant difference in Ca uptake as influenced by fertigation but no significant difference was observed due to varieties. Among the fertigation level, F_1 (0.59 g/m²) recorded highest Ca uptake, which differed significantly from other levels. Within the interactions, F_1V_2 (0.71 g/m²) exhibited significantly higher Ca uptake. This might be due to higher dry matter production in flower by F_1 level of fertigation. Similar results were also recorded by Waly *et al.* (6) in gladiolus, and Treder *et al.* (4) in oriental lily.

The pH of the growing media as referred in the Table 3. Was significantly influenced by different level of fertigation but not by varieties and their interactions. Among the fertigation level F_3 (6.44) recorded the maximum pH of the growing media followed by the control, F_0 (6.41) and the lowest was revealed in F_1 (6.35). Incase of organic carbon content, among the fertigation level, F_1 (1.83%) recorded highest organic carbon content, which was at par with F_2 (1.82%), both being significantly superior to other levels. Significant difference was also observed due to varieties and the interactions.

Available N in growing media (Table 3.) was significantly, influenced by fertigation and varieties as well as their interactions. Among the fertigation level, F_1 recorded higher value of av. N (0.061 g/100 g). Between the varieties, V_1 (0.052 g/100 g) was significantly higher than V_2 (0.050 g/100 g). Among the interactions, F_1V_1 (0.063 g/100 g) recorded the highest value. Both fertigation and variety as well as their interaction had significant effect on available P_2O_5 of the growing media. Within the fertigation levels, F_1 (0.0073 g/100 g) was significantly higher than other levels. Between the varieties, V_2 (0.0065 g/100 g) recorded higher available P_2O_5 content than V_1 (0.0058 g/100 g). Among the interactions, all levels of fertigation V_2 interacted significantly higher for P_2O_5 content than interactions with V_1 (Table 3.).

Available K₂O in the media was significantly influenced by fertigation was varieties and their interaction (Table 3.). Among the fertigation levels, F₁ recorded higher available K₂O content (0.22 g/100 g). Between the varieties V₂ (0.18 g/100 g) recorded significantly higher value than V₁ (0.16 g/100 g). Within the interactions, it was revealed that in F₁ and F₂ levels of fertigation, V₂ had significantly higher K₂O content than interactions with V₁ in which both were at per with each other.

In the present investigation there was an increase in the availability of NPK and organic carbon content in the growing media. The increase could be attributed to the conducive environment of the growing media created by maintaining high moisture level, which might have increased the solubility of these nutrients. The decomposition and release of nutrients by the high organic matter containing substrates coupled with external fertilizer retention leads to higher nutrient availability. Similar trends were also observed by Chen *et al.* (2). From the results of the present investigation, it can be inferred that the fertigation with 100% fertilizer dose of N & K through drip (F_1) proved to be superior for authurium production

REFERENCES

- Ashok, A.D. and Rengasamy, P. 2000. Effect of nitrogen fertilization at different levels and source on the growth of cut rose cv. First Red under green house conditions. *South Indian Hort.* 48: 139-41.
- Chen, F.D., Fang, W.N., Vu, Z.X. and Yuan, C. 1999. Preliminary study on soilless culture of *Dianthus. Acta Agri Shangai*, **15**: 87-89.
- Rajeevan, D.K., Valsalakumari, P.K., Prasad Rao, G.S.L.H.V., Liji, P.V. and Mohan, S. 2007. Performance evaluation of cut flower varieties of anthurium under two agro-climatic condition. *J. Orn. Hort.* **10**: 177-80.
- Tredar, J. 2001. The effect of light and nutrition on growth and flowering of oriental liles. *Acta Hort.* 548: 523-28.
- Tredar, J., Maloupa, E. and Gerasopoluas, D. 2001. Pro. Int. Symp. Growing Media and Hydroponics, Kassandra, Macedoria, Greece 31st Aug-6 Sept., 1999. Acta Hort. 548: 523-28.
- Waly, A.A., Ali, M.A.H., Hassan, M.A. and Sadek, F.O. 2001. Response of gladiolus plant to different complete fertilizer treatments and North Sinai conditions. *Ann. Agric. Sci. Moshtohor*, **39**: 1665-80.

Received : March, 2011; Revised : December, 2011; Accepted : May, 2012