

# Comparative performance of various pollinators in guava

A.K. Singh<sup>\*,\*\*</sup>

AICRP (Honey Bees & Pollinators), School of Agriculture Sciences & Rural Development, Nagaland University, Medziphema 797106, Nagaland

### ABSTRACT

The present study was carried out to compare the performance of pollinators through modular approach. The Apis cerana, Apis dorsata, Apis florea, Xylocopa tenuiscapa, Lucilia sericata, Musca domestica and Haematobia irritans were major pollinators included during the course of study. The performance of pollinators varied from species to species at different hours in a day as well as floral incidence. Highest performance of all the pollinators was observed during 0601 to 0700 h of the day. Of the pollinators, A. cerana proved to be the most efficient pollinator of guava followed by A. dorsata. Highest performance of A. cerana coincided with the peak of anthesis. The performance of all Apis spp. after 1100 h was reduced to nought.

Key words: Psidium guajava, pollinator performance, pollen deposition, visit frequency.

Guava (*Psidium guajava* L.) bears hermaphrodite, chasmogamous and thrum flowers thus, pollinators are crucial in order to accomplish pollination. Beside these, the degree of out- crossing in guava also varies from 35 to 40 % (Nakasone and Paull, 6). The chasmogamous and thrum characters of the guava flower and their degree of out-crossing show sufficient promise and scope for insect pollination. The plant-pollinator interaction is the best example of mutualism where pollinators utilize the floral rewards, while pollination is accomplished in plants. The comparison of diverse pollinator performance is a complicated investigation in plant system. Anthecologist are always inclined to determine the pollinator performance (Ne'eman et al., 7). The effectiveness has been reported synonymously by numerous scientists as pollination effectiveness (Mayfield *et al.*, 4) and pollinator efficiency (Singh, 11). The performance is determined on the basis of total number of pollen deposition on stigma in single visit, visit frequency, proportion of flowers with receptive stigmata and foraging duration of pollinators that overlaps with the receptivity of stigma. The comparison of pollinator performance by virtue of this modular approach is missing in guava. Hence, the present investigation was envisaged to compare the performance of guava pollinators.

The experiment was accomplished at Guava Farm of Central Institute of Horticulture, Medziphema, Nagaland. The pollen deposition on stigma by pollinators was recorded from 0501 to 1600 h, at an interval of one hour, once in a week from the commencement of bloom to its cessation. The matured and virgin flower buds were selected and marked. The matured buds were opened with forceps, stigma was capped and thereafter, the stamen was beheaded by scissor beneath the anther. The emasculated flowers were bagged, and out of those flowers, some were opened and permitted pollinators to visit on them. The flowers were immediately harvested after a single visit of pollinator and thereafter, placed in separate vials and marked with pollinator's name. The stigmas were removed and stained. The stigmas were gently crushed between slide and cover slip, and the number of con-specific pollen grains on the stigma was counted under microscope (Dafni, 1). The visit frequency of pollinators was recorded at an interval of one hour, once in a week. In order to determine the visit frequency, the number of visits of pollinator species per meter square in ten minutes was recorded with the help of stopwatch. Out of dehisced flower per meter square, proportion of receptive stigmats was calculated. Insect pollinators/ visitors were collected by sweeping method. The performance of diverse pollinator species was calculated with the modular approach formula given by Ne'eman et al. (7). These data were analyzed in split-split- plot design and data of each character were subjected to statistical test by applying analysis of variance technique.

The performance of guava pollinators varied significantly from species to species. Out of pollinators, performance of bees was much higher than the flies. The highest performance recorded was of *A. cerana* followed by *A. dorsata*, *A. florea*, *X. tenuiscapa*, *L. sericata and M. domestica* during 2014, and a similar trend was observed in 2015.

<sup>&</sup>lt;sup>1</sup>Corresponding author's E-mail: dr.akhileshento@rediffmail.com \*\*BUAT, Banda, 210001 (U.P.)

Among the performance of pollinators in a day, highest performance on an average (3046/3026) was recorded for A. cerana during 2014/2015, respectively (Table 1). The performance of pollinator species varied significantly from hour to hour in a day. Among the hourly intervals in a day, the highest performance of all the pollinator species was recorded between 0601 to 0700 h in 2014 (1508.60) and 2015 (1377.10) years (Table 2). The performance of pollinator species also varied significantly from day to day once in a week, their population and performance coincided with the flower incidence. Among the days of observation, the highest performance of all the pollinator species (1088.43) in a day was recorded on the 12<sup>th</sup> May 2014 with the similar trend observed in 2015 (Table 1). The interaction effect of performance varied significantly from species to species and from day to day once in a week as presented in the Table 1. The combined effect of pollinator performance in a day (4205-4462) for A. cerana on 12th May was significantly higher than other combinations during the course of both years of studies. The interaction effect of performance of pollinator species varied significantly from species to species and hour to hour in a day as presented in the Table 2. The pollinator species, A. cerana, A. dorsata, A. florea and X. tenuiscapa performed best during 0601 to 0700 h, while L. sericata, M. domestica and H. irritans behaved similarly during 0701 to 0800 h in 2014 and 2015. The performance of all the Apis spp. after 1100 h was nought while L. sericata, M. domestica and H. irritans performed till the 1500 h during both the sessions of experimentation. The combined effect

| Table 1 | . Interaction | effects | of pollen | deposition | effectiveness | of | pollinator | and | dates | of | blooming | period | 201 | 4 |
|---------|---------------|---------|-----------|------------|---------------|----|------------|-----|-------|----|----------|--------|-----|---|
|---------|---------------|---------|-----------|------------|---------------|----|------------|-----|-------|----|----------|--------|-----|---|

| Pollinator                            | 21 <sup>st</sup> Apr | 28 <sup>th</sup> Apr   | 5 <sup>th</sup> May | 12 <sup>th</sup> May | 19 <sup>th</sup> May | 26 <sup>th</sup> May | 2 <sup>nd</sup> Jun | Mean      | Total  |
|---------------------------------------|----------------------|------------------------|---------------------|----------------------|----------------------|----------------------|---------------------|-----------|--------|
| Apis cerana                           | 2633                 | 3221                   | 3608                | 4462                 | 3154                 | 2642                 | 1605                | 3046      | 21325  |
| Apis dorsata                          | 1189                 | 1399                   | 1657                | 1922                 | 1292                 | 1172                 | 692                 | 1332      | 9323   |
| Apis florea                           | 180                  | 239                    | 296                 | 374                  | 236                  | 208                  | 114                 | 235       | 1647   |
| Xylocopa tenuiscapa                   | 164                  | 252                    | 289                 | 352                  | 249                  | 229                  | 110                 | 235       | 1645   |
| Lucilia sericata                      | 134                  | 187                    | 210                 | 264                  | 174                  | 120                  | 98                  | 170       | 1187   |
| Musca domestica                       | 84                   | 103                    | 120                 | 160                  | 78                   | 52                   | 27                  | 89        | 624    |
| Haematobia irritans                   | 38                   | 50                     | 63                  | 85                   | 44                   | 26                   | 12                  | 45        | 318    |
| Mean                                  | 631.71               | 778.71                 | 891.86              | 1088.43              | 746.71               | 635.57               | 379.71              |           |        |
| Total                                 | 4422                 | 5451                   | 6243                | 7619                 | 5227                 | 4449                 | 2658                | 5153      | 36069  |
|                                       |                      |                        |                     |                      | Sem                  | CD (0.05)            |                     |           |        |
| Performance of pollina                | tor species          | (P)                    |                     |                      | 3.91                 | 12.06                |                     |           |        |
| Dates of blooming (D)                 |                      |                        |                     |                      | 3.97                 | 11.15                |                     |           |        |
| Ρ×D                                   |                      |                        |                     |                      | 10.49                | 29.50                |                     |           |        |
| Interaction effects of p              | ollen depos          | ition effectiv         | veness pol          | linator spe          | cies and va          | arious dates         | s of bloom          | ing perio | d 2015 |
| Pollinator                            | 21 <sup>st</sup> Apr | 28 <sup>th</sup> April | 5 <sup>th</sup> May | 12 <sup>th</sup> May | 19 <sup>th</sup> May | 26 <sup>th</sup> May | 2 <sup>nd</sup> Jun | Mean      | Total  |
| Apis cerana                           | 2622                 | 3117                   | 3621                | 4205                 | 3311                 | 2701                 | 1608                | 3026      | 21185  |
| Apis dorsata                          | 1243                 | 1437                   | 1478                | 1659                 | 1292                 | 1170                 | 748                 | 1290      | 9027   |
| Apis florea                           | 201                  | 240                    | 283                 | 340                  | 250                  | 235                  | 161                 | 244       | 1710   |
| Xylocopa tenuiscapa                   | 139                  | 288                    | 298                 | 177                  | 225                  | 251                  | 132                 | 216       | 1510   |
| Lucilia sericata                      | 139                  | 114                    | 181                 | 186                  | 147                  | 106                  | 77                  | 136       | 950    |
| Musca domestica                       | 110                  | 92                     | 69                  | 137                  | 82                   | 28                   | 24                  | 77        | 542    |
| Haematobia irritans                   | 37                   | 47                     | 58                  | 76                   | 34                   | 24                   | 18                  | 42        | 294    |
| Mean                                  | 641.57               | 762.14                 | 855.43              | 968.57               | 763.00               | 645.00               | 395.43              |           |        |
| Total                                 | 4491                 | 5335                   | 5988                | 6780                 | 5341                 | 4515                 | 2768                | 5031      | 35218  |
|                                       |                      |                        |                     |                      | Sem                  | CD (0.05)            |                     |           |        |
| Performance of pollinator species (P) |                      |                        |                     |                      |                      | 17.56                |                     |           |        |
| Dates of blooming (D)                 | -                    | ·                      |                     |                      | 3.63                 | 10.21                |                     |           |        |
| P×D                                   |                      |                        |                     |                      | 9.61                 | 27.02                |                     |           |        |

#### Indian Journal of Horticulture, March 2020

| Pollinator                               | 0501                                  |           | 0701 to    | 0801to  | 0901     | 1001         | 1101 to        | 1201    | 1301     | 1401  | Mean | Total   |
|------------------------------------------|---------------------------------------|-----------|------------|---------|----------|--------------|----------------|---------|----------|-------|------|---------|
|                                          | to                                    | 0700      | 0800       | 0900    | to       | to           | 1200           | to      | to       | to    |      |         |
|                                          | 0600                                  |           |            |         | 1000     | 1100         |                | 1300    | 1400     | 1500  |      |         |
| Apis cerana                              | 3595                                  | 6467      | 4846       | 3140    | 2390     | 887          | 0              | 0       | 0        | 0     | 2133 | 21325   |
| Apis dorsata                             | 1658                                  | 2688      | 2048       | 1442    | 1025     | 462          | 0              | 0       | 0        | 0     | 932  | 9323    |
| Apis florea                              | 277                                   | 522       | 371        | 236     | 171      | 70           | 0              | 0       | 0        | 0     | 165  | 1647    |
| Xylocopa tenuiscapa                      | 0                                     | 513       | 389        | 275     | 179      | 142          | 40             | 87      | 20       | 0     | 165  | 1645    |
| Lucilia sericata                         | 83                                    | 198       | 257        | 219     | 155      | 102          | 88             | 79      | 6        | 0     | 119  | 1187    |
| Musca domestica                          | 50                                    | 106       | 161        | 116     | 81       | 52           | 26             | 26      | 6        | 0     | 62   | 624     |
| Haematobia irritans                      | 21                                    | 66        | 111        | 56      | 37       | 8            | 11             | 4       | 2        | 2     | 32   | 318     |
| Mean                                     | 812                                   | 1508.60   | 1169.00    | 783.43  | 576.86   | 246.14       | 23.57          | 28.00   | 4.86     | 0.29  |      | 5152.70 |
| Total                                    | 5684                                  | 10560     | 8183       | 5484    | 4038     | 1723         | 165            | 196     | 34       | 2     | 3607 | 36069   |
|                                          |                                       |           |            |         |          | Sem          | CD (0.05)      |         |          |       |      |         |
| Performance of pol                       | 3.91                                  | 12.06     |            |         |          |              |                |         |          |       |      |         |
| Hour intervals (H)                       |                                       |           |            |         |          |              | 10.90          |         |          |       |      |         |
| P×H                                      |                                       |           |            |         |          | 10.73        | 29.79          |         |          |       |      |         |
| Interaction effects of                   | of polle                              | n deposit | ion effect | iveness | by polli | nator sp     | ecies and      | hour in | itervals | 2015  |      |         |
| Pollinator                               | 0501                                  | 0601 to   | 0701 to    | 0801    | 0901     | 1001         | 1101 to        | 1201    | 1301     | 1401  | Mean | Total   |
|                                          | to                                    | 0700      | 0800       | to      | to       | to           | 1200           | to      | to       | to    |      |         |
|                                          | 0600                                  |           |            | 0900    | 1000     | 1100         |                | 1300    | 1400     | 1500  |      |         |
| Apis cerana                              | 3395                                  | 5984      | 5083       | 3168    | 2648     | 907          | 0              | 0       | 0        | 0     | 2119 | 21185   |
| Apis dorsata                             | 1416                                  | 2492      | 2109       | 1476    | 1033     | 501          | 0              | 0       | 0        | 0     | 903  | 9027    |
| Apis florea                              | 324                                   | 500       | 409        | 248     | 158      | 71           | 0              | 0       | 0        | 0     | 171  | 1710    |
| Xylocopa tenuiscapa                      | 0                                     | 444       | 423        | 280     | 176      | 90           | 66             | 15      | 16       | 0     | 151  | 1510    |
| Lucilia sericata                         | 68                                    | 141       | 179        | 163     | 127      | 101          | 84             | 56      | 19       | 12    | 95   | 950     |
| Musca domestica                          | 48                                    | 50        | 140        | 76      | 50       | 70           | 47             | 43      | 18       | 0     | 54   | 542     |
| Haematobia irritans                      | 26                                    | 29        | 112        | 62      | 34       | 15           | 8              | 2       | 2        | 4     | 29   | 294     |
| Mean                                     | 753.86                                | 1377.10   | 1207.90    | 781.86  | 603.71   | 250.71       | 29.29          | 16.57   | 7.857    | 2.286 |      | 5031.10 |
| Total                                    | 5277                                  | 9640      | 8455       | 5473    | 4226     | 1755         | 205            | 116     | 55       | 16    | 3522 | 35218   |
|                                          |                                       |           |            |         |          | Sem          | CD (0.05)      |         |          |       |      |         |
|                                          | Performance of pollinator species (P) |           |            |         |          |              |                |         |          |       |      |         |
| Performance of pol                       | linator                               | species ( | P)         |         |          | 5.70         | 17.56          |         |          |       |      |         |
| Performance of pol<br>Hour intervals (H) | linator                               | species ( | P)         |         |          | 5.70<br>4.33 | 17.56<br>12.03 |         |          |       |      |         |

Table 2. Interaction effects of pollen deposition effectiveness by pollinator species and hour intervals 2014

of performance of *A. cerana* and the hour interval from 0601 to 0700 h was significantly better than the other combinations during 2014 and 2015.

In the experimental area (Nagaland), *Apis* mellifera was not prevailing and beekeepers deal with only *A. cerana* in beekeeping and as a matter of fact, population of *A. cerana* was dominant. Guava bears chasmogamous flowers and the flowers were emasculated before anthesis. Thus, there was no reason to believe that the pollens were deposited by self-pollination before anthesis or during emasculation. Stigma became receptive just after anthesis (Sharma *et al.*, 10) and peak period of anthesis and dehiscence took place during 6.30 to 8.30 AM (Dhaliwal and Singla, 2). The greater abundance of honeybee resulted in it being a more effective pollinator, and visit frequency remained as an integral component of pollinator performance which varied with pollinators (Rader *et al.*, 9). The significant variation of pollinator performance could be due to variation in visit frequency and variation in ability of pollen deposition. Fenster *et al.*, 3, corroborated the present finding that performance of pollinator varied among different species. The performance of pollinators varied on different dates during blooming period, and it coincided with the flower incidence. The visit frequency of pollinators correlated positively with the flower density (Mesa *et al.*, 5). The initiation of foraging by pollinators began after 1 hour of anthesis commencement, while peak of foraging was observed to be at the peak of flower anthesis. The foraging cessation of *Apis* spp. occurred after one hour of anthesis cessation. These attributes show that the foraging of pollinators, especially *Apis* spp. were driven by floral reward. Polatto *et al.* (8) also observed that the foraging activity of each species was driven by floral reward.

In conclusion, seven species; *A. cerana*, *A. dorsata*, *X. tenuiscapa*, *A. florea*, *L. sericata*, *M. domestica* and *H. irritans* were found to be efficient pollinators and were playing pivotal role in guava pollination in this niche. The performance varied among species to species, hour to hour and day to day. Out of all guava pollinators, *A. cerana* has proved itself as the ultimate pollinator of guava in this niche. *A. dorsata* and *A. florea* were also efficient pollinators but their low visit frequency curtails their performance in guava pollination. The augmentation and conservation of these key pollinators can maximize the pollination and thereby, enhance the productivity.

## ACKNOWLEDGMENT

Author is thankful to the ICAR for fund and CIH, Medziphema, Nagaland for provide farm. I am grateful to Dr. H. K. Singh, Mr. Ngukho and Mr. Akum who provided valuable help.

## REFERENCES

- 1. Dafni, A. 1992. *Pollination Ecology: A Practical Approach*, Oxford University Press, UK, 250p.
- 2. Dhaliwal, G.S. and Singla, R. 2002. Studies on the time of anthesis and dehiscence in different genotypes of guava in winter and rainy season crops. *Indian J. Hort.* **59**:157-61

- Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R. and Thomson, J.D. 2004. Pollination syndromes and floral specialization. *Annu. Rev. Ecol. Syst.* 35: 375-403.
- Mayfield, M.M., Waser, N.M. and Price, M.V. 2001. Exploring the 'most effective pollinator principle' with complex flowers: bumblebees and *lpomopsis aggregata*. Ann. Bot. 88: 591-96.
- Mesa, L.A., Howlett, B.G., Grant, J.E. and Didham, R.K. 2013. Changes in the relative abundance and movement of insect pollinators during the flowering cycle of *Brassica rapa* crops: implications for gene flow. *J. Insect Sci.* 13: 1-18.
- Nakasone, Y.H., and Paull, R.E. 1998. Tropical fruits, In: Crop Production Science in Horticulture series. CAB International, Wallingford, pp. 468.
- Ne'eman, G., Jurgens, A., Newstrom-Lloyd, L., Potts, S.G. and Dafni, A. 2010. A framework for comparing pollinator performance: effectiveness and efficiency. *Biol. Rev.* 85: 435-41.
- Polatto, L.P., Chaud-Netto, J. and Alves-Junior, V.V. 2014. Influence of abiotic factors and floral resource availability on daily foraging activity of bees. *J. Insect Behav.* 27: 593-12.
- Rader, R., Howlett, B.G., Cunningham, S.A., Westcott, D.A., Newstrom-Lloyd, L.E., Walker, M.K., Teulon, D.A.J. and Edwards, W. 2009. Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. *J. Appl. Ecol.* 46: 1080-87.
- Sharma, S., Sehrawat, S.K. and Saran, P.L. 2011. Comparative performance of superior guava genotypes in Northern India: Flowering and fruit set. *Indian J. Hort.* 68: 193-96.
- 11. Singh, A.K. 2016. Pollinating Efficiency of Native Bee Pollinators of Pigeonpea (*Cajanus cajan*) in Nagaland. *Russ. J. Ecol.* **47**: 310-14.

Received : July, 2019; Revised : December, 2019; Accepted : February, 2020