

Effect of planting ratio (Female: Male) and foliar spray of plant growth regulators on seed yield in CMS based chilli hybrid UARChH42 (JCH42)

Neha Thakur^{*}, S.N. Vasudevan^{**}, B.V. Tembhurne^{***}, S.R. Doddagoudar^{***} and M.G. Patil^{***} Department of Seed Science and Technology, UAS, Raichur 584104, Karnataka

ABSTRACT

Present experiment was aimed to determine the effect of planting ratio followed by PGR spray on seed yield of newly released chilli hybrid UARChH42 (JCH42). Significantly higher value of number of fruits plant⁻¹ (37.86 and 44.01), seed yield (27.68 and 27.75 kg ha⁻¹) and number of seeds per fruit (72.68 and 74.30) was obtained in P₂ (2:1) planting ratio and PGR spray of S₄ (NAA @ 40 ppm) respectively. Similar trend was seen in treatment combination P₂S₄ (2:1 + NAA @ 40 ppm). Results revealed that 2:1 ratio proved to be best for natural crossing followed by spraying at flower initiation stage with NAA @ 40 ppm to obtain higher seed yield.

Key words: Capsicum annuum, plant growth regulators, planting ratio.

Chilli (Capsicum annuum L.) is a member of solanaceae family and one of the most valuable fruit vegetables in the world. Capsicum is derived from the Greek word 'Kapsimo' meaning 'to bite'. In India, chilli occupies an area of 364 thousand hectares with a production of 3720 thousand metric tonnes and productivity of 10.2 metric tonnes per hectare in (Anonymous, 1). The popularity of chilli F, hybrid seed production through cultivars developed by cytoplasmic male sterility (CMS) eliminating emasculation is increasing worldwide. Therefore, it is necessary to produce genetically pure and good quality seeds by adopting suitable seed production techniques. Using CMS to produce hybrids may reduces the hybrid seed cost by about 50 per cent (Aulakh, 2) and ensures purity of the F₁ seed as there is no chance of selfing. CMS utilizes female and male plants which are sown in a definite ratio in field and allowed to set fruits naturally and hybrid fruits are harvested from female parent. Khurana et al. (4) standardized 2 : 1 as best planting ratio for hybrid seed production of chilli hybrid 'CH-3'. For enhancing the yield in these lines plant growth regulators (PGR's) proves beneficial to stimulate and modify natural growth regulatory system. They are considered as new generation agrochemicals after fertilizers, pesticides and herbicides. GA, and NAA are also important growth regulators that may have ability to modify the growth, sex ratios and yield contributing characters of plant. The purpose of present investigation was to study the combined as well as individual effect of various planting ratios and PGR spray on chilli seed yield.

The experiment was carried out during kharif 2016 and 2017 at University of Agricultural Sciences, Raichur, Karnataka. Seeds of A line and R line were sown separately in pro trays inside nursery under shade net and were transplanted in the main field after 45 days at spacing of (90 × 60 cm) row to row and plant to plant and each in different ratios viz., 1:1, 2:1, 3:1 and 3:2. The foliar sprays of different PGR treatments viz., control (no chemical spray), 2, 4-D @ 2 ppm, GA, @ 50 ppm and NAA @ 40 ppm were done on the crop at initial stages of flowering and then at 30 days interval. Factorial experimental design with 16 treatment combinations (4 planting ratios × 4 PGR sprays) was laid out in Randomized Complete Block Design (FRCBD) in field and Factorial Completely Randomized Design (FCRD) in laboratory. For each treatment yield parameters were recorded (Table 1). Seed yield (kg ha-1) was calculated using following formula. The statistical analysis was carried out for each observed character under the study using MS-Excel, OPSTAT software & ANOVA as per the design of experiment

Seed yield (kg ha⁻¹) =
$$\frac{\text{Seed yield per sq m (g) × 10000}}{1000}$$

OPSTAT software available on the CCSHAU home page **ANOVA** - Analysis of Variance

The analysis of variance results revealed that planting of the parent lines in (2:1) P_2 ratio resulted in maximum yield (Table 1) *viz.* dry fruit yield per plant (52.84 and 54.69 g), number of fruits per plant (42.57 and 44.01), seed weight per fruit (0.402 and 0.419 g), seed yield (27.06 and 27.75 kg ha⁻¹) in the year 2016 and 2017 respectively. Also, higher number of seeds per fruit (74.87 in 2016, 78.26 in 2017) were recorded in (1: 1) P_1 ratio and it was on

^{*}Corresponding author's Email : nthakur0708@gmail.com

^{**}ZARS, V.C. Farm, Mandya, UAS, Bengaluru

^{***}Agriculture College, UAS, Raichur

Indian Journal of Horticulture, March 2020

 Table 1. Effect of planting ratio and foliar spray of plant growth regulators on yield parameters in chilli hybrid UARChH42 (JCH42).

Treatment	Dry fruit yield plant ⁻¹ (g)		Number of fruits plant ⁻¹		Number of seeds per fruit		Seed weight per fruit (g)		Seed yield (kg ha⁻¹)	
-	2016	2017	2016	2017	2016	2017	2016	2017	2016	2017
	2010	2017		Main effect			2010	2017	2010	2011
P ₁	40.60	44.28	31.67	33.13	74.87ª	78.26ª	0.386 ^{ab}	0.391ª	25.63	25.97
P_2	52.84	54.69	42.57	44.01	72.68ª	76.85ª	0.402ª	0.419	27.06	27.75
P ₃	37.27ª	38.47ª	27.05 ª	27.90 ª	62.62	67.47	0.367 ^b	0.386ª	24.42	24.53
P ₄	35.97ª	37.00 ª	26.80 ª	26.45 ª	56.81	59.08	0.363 ^b	0.361	21.61	22.72
S. Em±	1.03	0.63	0.73	0.55	1.33	0.84	0.008	0.007	0.30	0.23
		0.00	0.1.0		ct (PGR S		01000	01001	0.00	0.20
CD @ 5 %	2.97	1.82	2.10	1.58	3.83	2.42	0.024	0.020	0.86	0.67
S ₁	40.73ª	42.70 ª	31.29 ª	32.07 ª	65.33 ^b	67.88	0.377	0.393ª	24.86ª	24.92
S ₂	37.41	39.69	27.79	28.70	58.96	64.46	0.364	0.370	21.35	22.7 ⁻
S ₃	41.22 ª	43.69 ª	32.51 ª	32.86 ª	67.79 ^{ab}	71.43	0.382	0.389ª	25.23ª	25.67
S ₄	47.31	48.36	36.50	37.86	69.88ª	74.30	0.395	0.405ª	27.28	27.68
S. Em±	1.03	0.63	0.73	0.55	1.33	0.84	0.008	0.007	0.30	0.23
CD @ 5%	2.97	1.82	2.10	1.58	3.83	2.42	NS	0.020	0.86	0.67
-				Interact	ion effect	(PXS)				
P_1S_1	40.11	44.13 ^{bc}	31.07 ^{cd}	33.02 ^{de}	61.57 ^d	70.24 ^{cd}	0.386	0.382	25.99 ^{ab}	25.37
P_1S_2	38.29	40.55 ^{cd}	28.77 ^d	29.93 ^{ef}	55.69 ^e	65.69 ^{de}	0.358	0.378	23.32 ^{cd}	24.08
	39.08	45.56 ^b	32.07 ^{bc}	34.44 ^d	75.47 ^{ab}	78.35ª	0.387	0.389	26.49ª	27.11
P ₁ S ₄	44.93	46.88 ^b	34.77 [⊳]	35.14 ^{cd}	77.9ª	81.47ª	0.411	0.415	26.73ª	27.32
P_2S_1	48.01	50.39ª	38.89 ª	40.05 ^{ab}	76.52ª	79.52ª	0.397	0.418	27.22ª	27.89
$P_2 S_2$	46.63	47.30 ab	36.11 ^{ab}	37.56 ^{bc}	70.04 ^{bc}	73.70 ^{bc}	0.389	0.402	22.26 ^d	22.99
P_2S_3	52.63	54.75	43.49	42.22ª	76.11ª	78.33 ^{ab}	0.409	0.419	27.55ª	27.63
P_2S_4	64.11	66.31	51.79	56.23	76.80ª	78.84ª	0.414	0.439	31.20	32.49
P₃S₁	37.23	38.53 ^d	27.44 ^{de}	27.85 ^f	65.95°	64.15 ^e	0.367	0.406	24.76 ^b	24.05
$P_{3}S_{2}$	32.84	35.36 ^e	22.34 ^f	23.44 ^h	58.36 ^d	62.69 ^{ef}	0.351	0.373	21.08°	21.89
$P_{3}S_{3}$	36.37	36.96 ^e	26.72 ^e	28.65 ^f	62.01 ^d	70.47°	0.370	0.379	24.98 ^b	25.11
$P_{3}S_{4}$	42.63	43.03°	31.70°	31.67°	64.17 ^{cd}	72.58°	0.381	0.387	26.85ª	27.08
P_4S_1	37.59	37.75 ^d	27.78 ^d	27.38 ^{fg}	57.27 ^{de}	57.61 ^f	0.359	0.367	21.46 ^e	22.35
P_4S_2	31.90	35.55 ^e	23.93 ^{ef}	23.88 ^h	51.78 ^e	55.78 ^f	0.358	0.326	18.74	21.86
P_4S_3	36.81	37.50 ^d	27.76 ^d	26.15 ^{gh}	57.55 ^d	58.60 ^f	0.362	0.368	21.89 ^{de}	22.83
P_4S_4	37.58	37.21 ^{de}	27.73 ^d	28.39 ^f	60.65 ^d	64.32 ^e	0.374	0.381	24.33 ^{bc}	23.83
Mean	41.67	43.61	32.02	32.87	65.49	69.52	0.380	0.389	24.68	25.24
S. Em±	2.06	1.26	1.45	1.10	2.65	1.68	0.016	0.014	0.59	0.46
CD @ 5 %	NS	3.65	4.19	3.17	7.66	4.85	NS	NS	1.72	1.34

Values followed by same alphabets are on par with one another; Treatment details are given in legend

Legend

S3 = GA3 @ 50 ppm	P2S1= (2:1 + no chemical spray)	P3S3 = (3:1 + GA3 @ 50 ppm)
S4 = NAA @ 40 ppm	P2S2 = (2:1 + 2, 4-D @ 2 ppm)	P3S4= (3:1 + NAA @ 40 ppm)
P1S1= (1:1 + no chemical spray)	P2S3 = (2:1 + GA3 @ 50 ppm)	P4S1= (3:2 + no chemical spray)
P1S2 = (1:1 + 2, 4-D @ 2 ppm)	P2S4 = (2:1 + NAA @ 40 ppm)	P4S2 = (3:2 + 2, 4-D @ 2 ppm)
P1S3 = (1:1 + GA3 @ 50 ppm)	P3S1 = (3:1 + no chemical spray)	P4S3= (3:2 + GA3 @ 50 ppm)
P1S4 = (1:1 + NAA @ 40 ppm)	P3S2 = (3:1 + 2, 4-D @ 2 ppm)	P4S4 = (3:2 + NAA @ 40 ppm)
	S4 = NAA @ 40 ppm P1S1= (1:1 + no chemical spray) P1S2 = (1:1 + 2, 4-D @ 2 ppm) P1S3 = (1:1 + GA3 @ 50 ppm)	S4 = NAA @ 40 ppm P2S2 = (2:1 + 2, 4-D @ 2 ppm) P1S1= (1:1 + no chemical spray) P2S3 = (2:1 + GA3 @ 50 ppm) P1S2 = (1:1 + 2, 4-D @ 2 ppm) P2S4 = (2:1 + NAA @ 40 ppm) P1S3 = (1:1 + GA3 @ 50 ppm) P3S1 = (3:1 + no chemical spray)

par with P₂. Further, alteration in the ratio resulted in a reduction in these parameters as minimum yield parameters were observed in the planting ratio P₂(3: 2). In P₂ the male parent was sufficient to provide maximum pollen availability for fertilization of sterile population of female parent and the plant population of female line in this ratio was sufficient enough to produce optimum amount of fruit and seed yield and increase the yield parameter as compared to other ratios. In P₁ (1: 1) planting ratio due to availability of higher pollens per female flower, an increase in the number of seeds per fruit was observed and that was on par with the planting ratio $P_{2}(2: 1)$. Whereas, in 3:2 ratio, due to insufficient amount of pollens might not have completely fertilized all the ovules thus it lead to lower fruit and seed yield. These results are in conformity with the findings of Khurana et al., (4) and Kumari et al. (6) in chilli, Kumar et al. (5) in tomato. In case of effect of PGR the application of NAA @ 40 ppm ascribed to more efficient utilization of food for reproductive growth (flowering and fruit set), higher photosynthetic efficiency and enhanced source to sink relationship of the plant, accumulation of sugar and other metabolites that further contributed for the higher dry fruit yield plant⁻¹ (47.31 and 48.36 g), number of fruits plant⁻¹ (36.50 and 37.86), number of seeds per fruit (69.88 and 74.30), seed weight per fruit (0.405 g in 2017) and seed yield (27.28 and 27.68 kg ha⁻¹) in the year 2016 and 2017 respectively (Table 1). Also lowest values of these parameters were observed in the spray S₂ (2, 4-D @ 2 ppm) which suggests that this chemical was not able to fulfill the nutritional requirement of plant as compared to NAA. Similar results were observed by Tamilselvi and Vijayaraghavan (9), Singh et al. (8), Patel et al. (7) and Gare et al. (3) in chilli. Spraying of NAA might have provided the adequate supply of food reserves to resume embryo growth and synthesis of hydrolytic enzymes which are secreted and act on starchy endosperm, this in turn affected physiology of seed and further improved the growth and yield. Planting ratio of 2:1 for parental lines followed by natural crossing and foliar spray of NAA @ 40 ppm as plant growth regulator was effective for obtaining higher fruit yield and seed vield in chilli hybrid UARChH42 (JCH42).

ACKNOWLEDGEMENTS

The authors would like to acknowledge the staff of Department of Seed Science and Technology, UAS Raichur for their continued support and suggestion throughout the work.

REFERENCES

- 1. Anonymous, 2019. Selected state-wise area, production and productivity of dry chillies in India (2015-16 and 2016-17). https://www. indiastat.com
- Aulakh, P.S. 2016. Molecular mapping of nuclear male sterility gene *ms10* in chilli pepper (*Capsicum annuum* L.). Ph.D. thesis, Punjab Agric. Uni., Ludhiana (India).
- Gare, B.N., Raundal, P.U. and Burli, A.V. 2017. Effect of plant growth regulators on growth, yield and yield attributing characters of rainfed chilli (*Capsicum annuum* L.). *Adv. Agric. Res. & Tech. J.* 1: 195-97.
- Khurana, D.S., Parmar, P., Hundal, J.S. and Kanwar, J.S. 2002. Effect of plant population density and parental row ratio on hybrid seed production in chilli (*Capsicum annuum* L.). *Agri. Res. J.* **39**: 499-503.
- Kumar, S., Vyakaranahal, B.S., Palled, Y.B., Dharmatti, P.R. and Patil, M.S. 2008. Studies on crossing ratio and pollination time in tomato hybrid seed production (*Lycopersicon esculentum* Mill.). *Karnataka J. Agric. Sci.* 21: 30-4.
- Kumari, S.S., Reddy, C.C., Jyothi, K.U. and Reddy, P.V. 2017. Standardization of hybrid seed technology in chilli. *Indian J. of Arecanut, Spices* & *Medicinal Plants*, **19**: 40-2.
- Patel, V. P., Lal Eugenia, P. and John Suchit, A. 2016. Comparative study of the effect of plant growth regulators on growth, yield and physiological attributes of chilli (*Capsicum annuum* L.) cv Kashi Anmol. *Inter. J. Farm Sci.* 6: 199-204.
- 8. Singh, D.K., Rudra, B.C., Das, B. and Gangopadhyay, P.K. 2015. Effect of naphthalene acetic acid on yield of chilli (*Capsicum annuum L.*). *J. Agric. Technol.* **2**: 84-6.
- Tamilselvi, C. and Vijayaraghavan, H. 2014. Impact of plant growth regulators and formulations on growth of chilli (*Capsicum annuum* L.). *Plant Gene & Trait.* 5: 1-3.

Received : August, 2018; Revised : January, 2020; Accepted : March, 2020