Impact of cold acclimation on the oxidative and anti-oxidative system of bitter gourd seedlings exposed to low-temperature stress
Downloads
Published
DOI:
https://doi.org/10.58993/ijh/2024.81.4.12Keywords:
Enzymatic antioxidant, Lipid peroxidation, Non-enzymatic antioxidant, Oxidative parameters, Temperature treatmentIssue
Section
License
Copyright (c) 2024 Indian Journal of Horticulture

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Bitter gourd (Momordica charantia L.) is a cold-sensitive flowering vine, but it remains in demand around the year due to its medicinal properties. Therefore, a prime need is there to develop a cold resilient bitter gourd genotype. The study was designed to inspect the impact of cold stress and acclimation on oxidative and anti-oxidative parameters in two bitter gourd genotypes viz., PAUBG-56 and Punjab-14. For that fifteen-dayold bitter gourd seedlings were subjected to low-temperature stress (5°C) both directly and after acclimation (gradual decrease in temperature from 25 to 5°C before cold exposure). Leaflets were collected on various days after temperature treatment, and seven days of recovery period and analyzed for the above-mentioned parameters. Results showed a significant increase in oxidative stress markers in non-acclimated Punjab-14 seedlings, while PAUBG-56 demonstrated higher resilience through elevated enzymatic and non-enzymatic antioxidant activity. Acclimation improved stress tolerance in both genotypes, although PAUBG-56 showed superior recovery. Therefore, it is concluded that acclimation is an eminent method, that helps to enhance the tolerance capacity of bitter gourd against low-temperature stress.Abstract
How to Cite
Downloads
Aebi, H.E. 1983. Catalase. In: Methods of Enzymatic Analysis, Vol. III. H.O. Bergmeyer (Ed.) Academic Press, New York, pp. 273-286. Airaki, M., Leterrier, M., Mateos, R.M., Valderrama, R., Chaki, M. and Barroso, J. 2012. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annum L.) plants under low temperature stress. Plant Cell Environ. 35: 281-295. https://doi.org/10.1111/j.1365-3040.2011.02310.x Behera, T.K., Behera, S. and Bharathi, L.K. 2010. Bitter Gourd: Botany, Horticulture, Breeding. Hort. Rev. 37: 101-141. https://doi.org/10.1002/9780470543672.ch2 Beutler, E., Durron, O. and Kelly, B.M. 1963. Improved method for the determination of blood glutathione. J. Lab Clin. Med. 61: 882-888. Chinard, F.P. 1952. Photometric estimation of proline and ornithine. J. Biol. Chem. 199: 91-95. Claiborne, S. and Fridovich, I. 1979. Assay for peroxidase. In: Biochemical Methods, S. Sadasivam, Manickam (Ed.), New Age International Publishers, New Delhi, pp. 190. Devi, V., Sangha, M.K., Pathak, M. and Kumar, P. 2021. Biochemical changes in bitter gourd in response to low temperature stress. Indian J. Hort. 78: 78-83. https://doi.org/10.5958/0974-0112.2021.00011.6 Dhindsa, R.S. and Matowe, W.,1981. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J. Exp. Bot. 32: 79-91. https://doi.org/10.1093/jxb/32.1.79 Fahimirad, S., Karimzadeh, G. and Ghanati, F. 2013. Cold-induced changes of antioxidant enzymes activity and lipid peroxidation in two canola (Brassica napus L.) cultivars. J. Plant Physiol. Breed. 3: 1. Gong, M., Li, H.Y. and Li, C.G. 2011. Short term cold shock at 1˚C induced chilling tolerance in maize seedlings. IACSIT Press: Singapore, 1: 346. doi:10.1016/j.egypro.200.10.519 Hajiboland, R. and Habibi, G. 2011. Contrastive responses of spring and winter wheat cultivars to chilling and acclimation treatments. Acta. Agri. Sloven. 97: 233-239. Jagota, S.K. and Dani, H.M. 1982. A new colorimetric technique for estimation of vitamin C using folin phenol reagent. Anal. Biochem. 15: 178-182. doi: 10.1016/0003-2697(82)90162-2 Jiang, A., Guo, Y.J., Fan, Y., Xiang, B.J., He, W., Wang, L. and Zhang, J. 2010. Effect of low temperature stress on cold resistance of Zea mexicana seedling. Pratacultural Sci. 27: 89-92. Li, S.L., Xia, Y.Z. and Liu, J. 2014. Effects of cold-shock on tomato seedlings under high-temperature stress. Chin. J. Appl. Ecol. 25: 2927-2934. Liu, W., Yu, K., He, T., Li, F., Zhang, D. and Liu, J. 2013. The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. Sci. World J. 2013: 658793. https://doi.org/10.1155/2013/658793 Mensor, L.L., Menezes, F.S., Leita, G.G., Reis, A.S., Santos, T.C., Coube, C.S. and Leita, S.G. 2001. Screening of brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phyto. Res. 15: 127-130. doi: 10.1002/ptr.687. PMID: 11268111 Mo, Y., Liang, G., Shi, W. and Xie, J. 2010. Metabolic responses of alfalfa (Medicago Sativa L.) leaves to low and high temperature induced stresses. Afr. J. Biotech. 10: 1117-1124. Singh, B.K., Sutradhar, M., Singh, A.K. and Mandal, N. 2017. Cold stress in rice at early growth stage – An overview. Int. J. Pure App. Biosci. 5: 407-419. https://dx.doi.org/10.18782/2320-7051.2750 Sinha, A.K. 1971. Colorimetric assay of catalase. Anal. Biochem. 47: 389-394. doi: 10.1016/0003-2697(72)90132-7 Xing, Z., Wang, Y., Feng, Z. and Tan, Q. 2008. Effect of different packaging films on postharvest quality and selected enzyme activities of Hypsizygus marmoreus mushrooms. J. Agri. Food Chem. 56: 11838-11844. doi: 10.1021/jf8024387 Yadegari, L.Z., Heidari, R. and Carapetian, J. 2007. The influence of cold acclimation on proline, malondialdehyde (MDA), total protein and pigments contents in soybean (Glycine max) seedlings. J. Biol. Sci. 7: 1436-1441. doi:10.3923/jbs.2007.1436.1441 Zuther, E., Juszczak, L., Lee, Y.P., Baier, M. and Hincha, D.K. (2015). Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana an accessions. Sci. Rep. 5: 1-10. https://doi.org/10.1038/srep12199
References
Similar Articles
- H. N. Lavanya, Smaranika Mishra, M. Anjanappa, T. S. Aghora, Meenakshi Sood, Keshava Rao V, Anjaneya Reddy B, Biological response, efficiency and effectiveness of gamma irradiation as mutagen on Pusa Navbahar cluster bean , Indian Journal of Horticulture: Vol. 77 No. 03 (2020): Indian Journal of Horticulture
- Rahul Kumar Yadav, V. K. Tripathi, Effect of pruning intensity and foliar nutrition on growth, yield and quality of phalsa cv. Sharbati , Indian Journal of Horticulture: Vol. 82 No. 01 (2025): Indian Journal of Horticulture
- Pankaj Barua, Rumee Hazarika, Studies on fertigation and soil application methods alongwith mulching on yield and quality of Assam lemon (Citrus limon L. Burmf.) , Indian Journal of Horticulture: Vol. 71 No. 02 (2014): Indian Journal of Horticulture
- Balaji Vikram, V.M. Prasad, P.L. Saroj, Comparative study of varieties, honey coating and storage durations on aonla candy , Indian Journal of Horticulture: Vol. 71 No. 01 (2014): Indian Journal of Horticulture
- Showkat Ahmad, Ishtiyaq SrirAhadam, Amit Kumar, R.M. Bhagat, Efficacy of novel insecticides and biopesticides against whitefly on okra , Indian Journal of Horticulture: Vol. 72 No. 02 (2015): Indian Journal of Horticulture
- Debashis Dutta, Amit Nath, Dushyant Mishra, Nisha Verma, Pawan Kumar, Phytochemical studies on antioxidant activities of two types of Karonda (Carissa carandas) during storage , Indian Journal of Horticulture: Vol. 73 No. 04 (2016): Indian Journal of Horticulture
- Sandeep Singh, D.R. Sharma, Management of fruit flies in rainy season guava through male annihilation technique using methyl eugenol based traps , Indian Journal of Horticulture: Vol. 70 No. 04 (2013): Indian Journal of Horticulture
- Vinod Sharma, Narinder Singh Raina, Kamal Kishor Sood, Sandeep Sehgal, Improved genotypes of harad (Terminalia chebula): a new potential crop for Jammu & Kashmir region of India , Indian Journal of Horticulture: Vol. 79 No. 1 (2022): Indian Journal of Horticulture
- Bhakiyathu Saliha, B.Raman Selvakumar, S Padmasri, Effect of different sources and levels of sulphur on soil available nutrients and yield of Jasmine , Indian Journal of Horticulture: Vol. 78 No. 03 (2021): Indian Journal of Horticulture
- Dipankar Mandal, Rini Pal, Ashok K. Mohanty, Biological management of Sclerotium rot of chilli , Indian Journal of Horticulture: Vol. 80 No. 1 (2023): Indian Journal of Horticulture
<< < 20 21 22 23 24 25 26 27 28 29 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Veena Devi, Manjeet Kaur Sangha, Mamta Pathak, Parminder Kumar, Biochemical changes in bitter gourd in response to low temperature stress , Indian Journal of Horticulture: Vol. 78 No. 01 (2021): Indian Journal of Horticulture