Bioconversion of horticultural waste into value-added products: A Review
Downloads
Published
DOI:
https://doi.org/10.58993/ijh/2025.82.4.1Keywords:
Waste valorization, biotransformation, circular economy, sustainable gri-practices, value-added productsIssue
Section
License
Copyright (c) 2026 Aastha Dubey, Hari Shankar Gaur, Uzma Manzoor, Shalini Singh, Prasun Kumar Singh, Chongtham Allaylay Devi, Jyoti Yadav, Mahima Choudhary, Bulbul Ahmed

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Horticultural crops are vital component of food diversity, human health, and agriculture, especially in India. These crops contribute greatly to the gross domestic product (GDP), provide employment, and support food and nutritional security. Fruit, vegetable and spice processing industries produce large volumes of solid byproducts, including peels, pomace, seeds, cores, rinds, stones and spent residues, which constitute a significant proportion of the raw material processed. The magnitude of processing waste varies with commodity and technology, with fruit and vegetable processing generating approximately 30–60% solid residues, while spice oil and oleoresin industries produce exceptionally high waste fractions, reaching 80–90% of the processed material. At the global level, the fruit processing industry alone generates around 0.5 billion tonnes of processing waste annually, in addition to large volumes of wastewater, showing the resource-intensive nature of horticultural value addition. Improper management of these nutrient-rich but highly perishable processing residues leads to environmental problems like wastewater pollution, greenhouse gas emissions, odour formation and localized land and water contamination, while also imposing economic burdens on processors through disposal costs and inefficient resource utilization. These wastes could be gainfully utilized for production of animal feed, compost, biofertilizers, biofuels, essential oils, edible oils, food additives, pigments, nutraceuticals, preservatives, edible coatings, ethanol, and biodegradable plastics. Through appropriate bioconversion and value-addition technologies, horticultural residues can be transformed into a wide range of bio-based products, thereby minimizing environmental impacts and promoting resource efficiency. This review emphasizes the potential of utilizing horticultural waste to promote sustainable agricultural practices and support a circular economy.Abstract
How to Cite
Downloads
1. Adsule, R.N. and Kadam, S.S. 1995. Guava. In: Salunkhe, D.K. and Kadam, S.S. (Eds.), Handbook of Fruit Science and Technology. Marcel Dekker, New York, Basel, Hong Kong, pp. 419–33. 2. Akbay, H.E.G., Dizge, N. and Kumbur, H. 2022. Evaluation of electro-oxidation and Fenton pretreatments on industrial fruit waste and municipal sewage sludge to enhance biogas production by anaerobic co-digestion. J. Environ. Manage. 319: 115711. ttps://doi.org/10.1016/j.jenvman.2022.115711 3. Al-Anbari, I.H., Dakhel, A.M. and Adnan, A. 2019. The effect of adding local orange peel powder to microbial inhibition and oxidative reaction within edible film component. Plant Arch. 19: 1006–1012. 4. Alharbi, K.L., Raman, J. and Shin, H. 2021. Date fruit and seed in nutricosmetics. Cosmetics 8: (article number/page not provided). 5. Ali, O.H., Al-Sayed, H., Yasin, N. and Afifi, E. 2016. Effect of different extraction methods on stability of anthocyanins extracted from red onion peels (Allium cepa) and its uses as food colorants. Bull. Natl. Nutr. Inst. Arab Rep. Egypt 47: 1–24. 6. Ambarkahi, R.P.Y., Dhamayanthi, W., Wardani, D.K., Andini, P. and Pratama, F.E.A. 2023. Utilization of melon fruit waste as an additional ingredient for making aromatherapy candles. J. Dinamika: J. Pengabdian Masy. 8: 159–165. 7. Anallely, L.Y., Domínguez-López, I., Rosa, M. and Lamuela-Raventós, A. 2023. Tomato wastes and by-products: upcoming sources of polyphenols and carotenoids for food, nutraceutical, and pharma applications. Crit. Rev. Food Sci. Nutr. 64: 10546-10563 8. Aqilah, N.M.N., Rovina, K., Felicia, W.X.L. and Vonnie, J.M. 2023. A review on the potential bioactive components in fruits and vegetable wastes as value-added products in the food industry. Molecules 28: 2631. 9. Argun, M.E., Argun, M.Ş. and Ates, H. 2025. Zero waste principle for the fruit processing industry: Recovery, advanced conversion and revalorization approaches. J. Water Process Eng. 71: 107243. https://doi.org/10.1016/j.jwpe.2025.107243 10. Atwaa, E.S.H., Shahein, M.R., Radwan, H.A., Mohammed, N.S., Aloraini, M.A., Albezrah, N.K.A. and Elmahallawy, E.K. 2022. Antimicrobial activity of some plant extracts and their applications in homemade tomato paste and pasteurized cow milk as natural preservatives. Fermentation 8: 428. 11. Baddi, J., Vijayalakshmi, D. and Kapale, M. 2018. Extraction of total polyphenols and dietary fiber from mango peel–as potential sources of natural phytonutrients. Int. J. Curr. Microbiol. Appl. Sci. 7: 1196–1205. 12. Barbosa, M.L., Oliveira, L.M.D., Paiva, R., Dametto, A.C., Dias, D.D.S., Ribeiro, C.A. and Cruz, S.A. 2023. Evaluation of onion/laponite composite films for sustainable food packaging with enhanced UV protection and antioxidant capacity. Molecules 28: 6829. 13. Basuny, A.M.M. and Al-Marzooq, M.A. 2011. Production of mayonnaise from date pit oil. Food Nutr. Sci. 2: 938–943. 14. Bátori, V., Mostafa, J., Srivastava, R.K., Åkesson, D., Lennartsson, P.R., Zamani, A. and Taherzadeh, M.J. 2018. Synthesis and characterization of maleic anhydride-grafted orange waste for potential use in biocomposites. BioResources 13: 4986–4997. 15. Behiry, S.I., Okla, M.K., Alamri, S.A., El-Hefny, M., Salem, M.Z.M., Alaraidh, I.A., Ali, H.M., Al-Ghtani, S.M., Monroy, J.C. and Salem, A.Z.M. 2019. Antifungal and antibacterial activities of Musa paradisiaca L. peel extract: HPLC analysis of phenolic and flavonoid contents. Processes 7: 215. 16. Bernal-Mercado, A.T., Acevedo-Hernandez, C., Silva-Espinoza, B.A., Cruz-Valenzuela, M.R., Gonzalez-Aguilar, G.A., Nazzaro, F., Siddiqui, M.W., Ayala-Zavala, J.F., Fratianni, F. and Vazquez-Armenta, F.J. 2018. Antioxidant and antimicrobial capacity of phenolic compounds of mango (Mangifera indica L.) seed depending upon the extraction process. J. Med. Plants By-Prod. 7: 209–219. 17. Bogdan, C., Iurian, S., Tomuţa, I. and Moldovan, M. 2017. Improvement of skin condition in striae distensae: development, characterization and clinical efficacy of a cosmetic product containing Punica granatum seed oil and Croton lechleri resin extract. Drug Des. Dev. Ther.: 521–531. 18. Călinoiu, L.F., Mitrea, L., Precup, G., Bindea, M., Rusu, B., Dulf, F.V., Ştefănescu, B.E. and Vodnar, D.C. 2017. Characterization of grape and apple peel wastes’ bioactive compounds and their increased bioavailability after exposure to thermal process. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 74: 80. 19. Calzada, F., Mulia, Y.L. and Contreras, T.A. 2007. Effect of Mexican medicinal plant used to treat trichomoniasis on Trichomonas vaginalis. J. Ethnopharmacol. 113: 248–251. 20. Cao, Q., Huang, Z., Liu, S. and Wu, Y. 2019. Potential of Punica granatum biochar to adsorb Cu(II) in soil. Sci. Rep. 9: 11116. 21. Cautela, D., Vella, F., Castaldo, D. and Laratta, B. 2018. Characterization of essential oil recovered from fennel horticultural wastes. Nat. Prod. Res. 33: 1964–1968. 22. Chahoud, G., Aude, Y.W. and Mehta, J.L. 2004. Dietary recommendations in the prevention and treatment of coronary heart disease: do we have the ideal diet yet? Am. J. Cardiol. 94:1260–1267. 23. Chibane, L.B., Degraeve, P., Ferhout, H., Bouajila, J. and Oulahal, N. 2018. Plant antimicrobial polyphenols as potential natural food preservatives. J. Sci. Food Agric. 99:1457–1474. 24. Chiellini, E., Cinelli, P., Imam, S.H. and Mao, L. 2001. Composite films based on biorelated agro-industrial waste and polyvinyl alcohol: preparation and mechanical properties characterization. Biomacromolecules 2: 1029–1037. 25. Claudio, L., Ilaria, B., Caterina, M. and Marco, E. 2022. Green enzymatic recovery of functional bioactive compounds from unsold vegetables: storability and potential health benefits. Appl.Sci. 12: 12249. 26. Costa, A.P., Hermes, V.S., Rios, A.D. and Flôres, S.H. 2017. Minimally processed beetroot waste as an alternative source to obtain functional ingredients. J. Food Sci. Technol. 54: 2050–2058. 27. Daniele, S. and Fadda, A. 2022. Waste from food and agro-food industries as pigment sources: recovery techniques, stability and food applications. Nutraceuticals. 2: 365-383. 28. Das, K. 2020. Role of organic and environment friendly post-harvest management of organically grown horticultural produces. Int. J. Chem. Stud.8: 1553–1556. 29. Deb, P. and Madhugiri, M.J. 2012. Optimization of apple-pomace based medium for pigment production by Micrococcus flavus. Bioscan 7:57–60. 30. Devanesan, S., AlSalhi, M.S., Balaji, R.V., Ranjitsingh, A.J.A., Ahamed, A., Alfuraydi, A.A. and Othman, A.H. 2018. Antimicrobial and cytotoxicity effects of synthesized silver nanoparticles from Punica granatum peel extract. Nanoscale Res. Lett. 13: 1-10. 31. Din, S., Akram, W., Khan, H.A., Hussain, A. and Hafeez, F. 2011. Citrus waste-derived essential oils: alternative larvicides for dengue fever mosquito, Aedes albopictus (Skuse) (Culicidae: Diptera). Pak. J. Zool. 43: 367–372. 32. Ding, P. and Lee, Y.L. 2019. Use of essential oils for prolonging postharvest life of fresh fruits and vegetables. Food Res. Int. 26: 363–366. 33. Emaga, T.H., Andrianaivo, R.H., Wathelet, B., Tchango, J.T. and Paquot, M. 2007. Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem. 103: 590–600. 34. Fan, X., Gao, Y., He, W., Hu, H., Tian, M., Wang, K. and Pan, S. 2016. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydr. Polym. 151: 1068–1072. 35. Franco, P.B., De Almeida, L.A., Marques, R.F.C., Brucha, G. and Campos, M.G.N. 2016. Evaluation of antibacterial activity of chitosan membranes associated to unripe banana peel. Mater. Sci. Forum 869: 859–863. 36. Friedman, M., Kozukue, N., Kim, H.J., Choi, S.H. and Mizuno, M. 2017. Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial Gold, Red, and Russet potatoes. J. Food Compos. Anal. 62: 69–75. 37. Ganeshamurthy, A.N., Kalaivanan, D. and Rajendiran, S. 2020. Carbon sequestration potential of perennial horticultural crops in Indian tropics. In: Carbon Management in Tropical and Sub-Tropical Terrestrial Systems, pp. 333–348. 38. Geng, A., Xin, F. and Ip, J.Y. 2012. Ethanol production from horticultural waste treated by a modified organosolv method. Bioresour. Technol. 104: 715–721. 39. Ghosh, P.R., Fawcett, D., Sharma, S. and Poinern, G.E. 2017. Production of high-value nanoparticles via biogenic processes using aquacultural and horticultural food waste. Materials 10: 852. 40. Gonçalves, F.A., Sanjinez-Argandoña, E.J. and Fonseca, G.G. 2011. Utilization of agroindustrial residues and municipal waste of plant origin for cellulosic ethanol production. J. Environ. Protect. 2: 1303–1309. 41. Górnaś, P. and Rudzińska, M. 2016. Seeds recovered from industry by-products of nine fruit species with a high potential utility as a source of unconventional oil for biodiesel and cosmetic and pharmaceutical sectors. Ind.Crops Prod. 83: 329–338. 42. Gosavi, P., Chaudhary, Y. and Durve-Gupta, A. 2017. Production of biofuel from fruits and vegetable wastes. Eur. J. Biotechnol. Biosci. 5: 69–73. 43. Gowe, C. 2015. Review on potential use of fruit and vegetables by-products as a valuable source of natural food additives. Food Sci. Qual. Manag. 45: 47–61. 44. Guerrero, A.B., Ballesteros, I. and Ballesteros, M. 2018. The potential of agricultural banana waste for bioethanol production. Fuel 213: 176–185. 45. Gulsunoglu, Z., Karbancioglu-Guler, F., Raes, K. and Kilic-Akyilmaz, M. 2019. Soluble and insoluble-bound phenolics and antioxidant activity of various industrial plant wastes. Int. J.Food Prop. 22: 1501–1510. 46. Gunes, R., Palabiyik, I., Toker, O.S., Konar, N. and Kurultay, S. 2019. Incorporation of defatted apple seeds in chewing gum system and phloridzin dissolution kinetics. J. Food Eng. 255:9–14. 47. Gustavsson, J., Cederberg, C., Sonesson, U.,Van Otterdijk, R. and Meybeck, A. 2011. Global food losses and food waste: extent, causes and prevention. Food and Agriculture Organization of the United Nations, Rome. 48. Harahap, S., Ramli, N., Vafaei, N. and Said, M. 2012. Physico-chemical and nutritional composition of rambutan (Nephelium lappaceum) seed and seed oil. Pak. J. Nutr. 11:1073–1077. 49. Hoang, A.T., Pandey, A., Huang, Z., Nižetić, S., Le, A.T. and Nguyen, X.P. 2023. Biofuels an option for agro-waste management. In: Environmental sustainability of biofuels, pp.27–47. Elsevier. 389 Horticultural Waste Utilization 50. Huang, Q., Lin, X., Zhu, J.J. and Tong, Q.X. 2017. Pd–Au@ carbon dots nanocomposite: facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum. Biosens. Bioelectron. 94: 507–512. 51. Ibrahim, H.M. 2015. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 8: 265–275. 52. Isidoro, Carricondo-Martínez, D., Falcone, D., Berti, F., Orsini, F. and Salas-Sanjuan, M. del C. 2022. Use of agro-waste as a source of crop nutrients in intensive horticulture system. Agronomy. 12: 447. 53. Issara, U., Zzaman, W. and Yang, T.A. 2014. Rambutan seed fat as a potential source of cocoa butter substitute in confectionary product. Int. Food Res. J. 21: 25–31. 54. Jampílek, J. and Kráľová, K. 2020. Preparation of nanocomposites from agricultural waste and their versatile applications. In: Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems, pp. 51–98. Elsevier. 55. Jensch, C. and Strube, J. 2022. Proposal of a new green process for waste valorization and cascade utilization of essential oil plants. Sustainability 14: 3227. 56. Jiménez-Moreno, N., Esparza, I., Bimbela, F., Gandía, L.M. and Ancín-Azpilicueta, C. 2020. Valorization of selected fruit and vegetable wastes as bioactive compounds: opportunities and challenges. Crit. Rev. Environ. Sci. Technol. 50: 2061–2108. 57. Judith, J.V. and Vasudevan, N. 2022. Synthesis of nanomaterial from industrial waste and its application in environmental pollutant remediation. Environ. Eng. Res. 27: 200672 58. Junior, C.P., Coaquira, C.A., Mattos, A.L., de Souza Filho, M.D., Feitosa, J.P., Morais, J.P. and Rosa, M.D. 2018. Binderless fiberboards made from unripe coconut husks. Waste Biomass Valor. 9: 2245–2254. 59. Kadam, A., Patil, S. and Kirti, D. 2017. Fungal culture media formulation using fruit and vegetables waste. Int. J. Curr. Res. 9: 56887–56893. 60. Kantifedaki, A., Kachrimanidou, V., Mallouchos, A., Papanikolaou, S. and Koutinas, A.A. 2018. Orange processing waste valorisation for the production of bio-based pigments using the fungal strains Monascus purpureus and Penicillium purpurogenum. J. Clean. Prod. 185: 882–890. 61. Kar, Y. 2018. Pyrolysis of waste pomegranate peels for bio-oil production. Energy Sources Part A 40(23): 2812–2821. 62. Karimi, S. and Karimi, K. 2018. Efficient ethanol production from kitchen and garden wastes and biogas from the residues. J. Clean. Prod. 187: 37-45. 63. Katongole, C., Sabiiti, E., Bareeba, F. and Ledin, I. 2011. Utilization of market crop wastes as animal feed in urban and peri-urban livestock production in Uganda. J. Sustain. Agric. 35: 329–342. 64. Khandaker, M.M., Abdullahi, U.A., Abdulrahman, M.D., Badaluddin, N.A. and Mohd, K.S. 2021. Bio-ethanol production from fruit and vegetable waste by using Saccharomyces cerevisiae. In: IntechOpen. 65. Kumar, D., Shamim, M., Arya, S.K., Siddiqui, M.W., Srivastava, D. and Sindhu, S. 2021. Valorization of by-products from food processing through sustainable green approaches. In: Challenges and Opportunities of Circular Economy in Agri-Food Sec. Springer, pp. 191– 226. 66. Kumar, H., Bhardwaj, K., Dhanjal, D.S., Sharma, R., Nepovimova, E., Verma, R., Kumar, D. and Kuča, K. 2022. Fruit and vegetable peel waste: applications in food and environmental industries. In: Fruits and Vegetable Wastes: Valorization to Bioproducts and Platform Chemicals. Springer Nature, Singapore, pp.259–87. 67. Kumar, H., Bhardwaj, K., Sharma, R., Nepovimova, E., Kuča, K., Dhanjal, D.S., ... and Kumar, D. 2020. Fruit and vegetable peels: utilization of high value horticultural waste in novel industrial applications. Molecules 25:2812. 68. Kumar, M., Barbhai, M.D., Esatbeyoglu, T.,Zhang, B., Sheri, V., Dhumal, S., Rais, N., Radha, M., asry, E.M.S.A., Chandran, D., Pandiselvam, R., Senapathy, M., Dey, A., Deshmukh, S.V., Negm, M.E.S.M., Vishvanathan, M., Sathyaseelan, S.K., Viswanathan, S., Mohankumar, P. and Lorenzo, J.M. 2022. Apple (Malus domestica Borkh.) seed: a review on health promoting bioactivities and its application as functional food ingredient. Food Biosci. 50: Part B. 69. Kumari, S., Manohar, S., Kumari, P., Krishnan, V., Maheshwari, C., Narwal, S. and Dahuja, A. 2023. The role of major phenolics in apple to total antioxidant capacity. In: IntechOpen. 70. Kurek, M., Garofulić, I.E., Bakić, M.T., Ščetar, M., Uzelac, V.D. and Galić, K. 2018. Development and evaluation of a novel antioxidant and pH indicator film based on chitosan and food waste sources of antioxidants. Food Hydrocoll. 84:238-246. 71. Kurek, M., Hlupić, L., Ščetar, M., Bosiljkov, T. and Galić, K. 2019. Comparison of two pH responsive color changing bio-based films containing wasted fruit pomace as a source of colorants. J. Food Sci. 84: 2490-2498. 72. Lacivita, V., Incoronato, A.L., Conte, A. and Del Nobile, M.A. 2021. Pomegranate peel powder as a food preservative in fruit salad: a sustainable approach. Foods 10: 1359. 73. León, C.T., Rojas, R., Esquivel, J.C., Cock, L.S., Cerda, R.E. and Aguilar, C.N. 2016. Mango seed: functional and nutritional properties. Trends Food Sci. Technol. 55: 109–117. 74. Lim, S. and Matu, S. 2015. Utilization of agrowastes to produce biofertilizer. Int. J. Energy Environ. Eng. 6: 31– 35. 75. Liu, C., Jin, T., Liu, W., Hao, W., Yan, L. and Zheng, L. 2021. Effects of hydroxyethyl cellulose and sodium alginate edible coating containing asparagus waste extract on postharvest quality of strawberry fruit. LWT 148: 111770. 76. Løvdal, T., van Droogenbroeck, B., Eroglu, E.C., Kaniszewski, S., Agati, G., Verheul, M. and Skipnes, D. 2019. Valorization of tomato surplus and waste fractions: a case study using Norway, Belgium, Poland, and Turkey as examples.Foods 8: 229. 77. Luchese, C.L., Abdalla, V.F., Spada, J.C. and Tessaro, I.C. 2018. Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocoll. 82: 209-218. 78. Luchese, C.L., Sperotto, N., Spada, J.C. and Tessaro, I.C. 2017. Effect of blueberry agroindustrial waste addition to corn starch-based films for the production of a pH-indicator film. Int. J. Biol. Macromol. 104: 11–18. 79. Mahindrakar, A. 2018. Floral waste utilization—A review. Int. J. Pure Appl. Biosci. 6: 325-329. 80. Malacrida, C.R. and Jorge, N. 2012. Yellow passion fruit seed oil (Passiflora edulis f. flavicarpa): physical and chemical characteristics. Braz. Arch. Biol. Technol. 55: 127–134. 81. Manhongo, T.T., Chimphango, A.F.A., Thornley, P. and Röder, M. 2022. Current status and opportunities for fruit processing waste biorefineries. Renew. Sustain. Energy Rev. 155: 111823. https://doi.org/10.1016/j.rser.2021.111823 82. Marcelli, A., Osimani, A. and Aquilanti, L. 2025. Vegetable by-products from industrial processing: From waste to functional ingredient through fermentation. Foods 14: 2704. https://doi.org/10.3390/foods14152704 83. María, Gallego-García, D., Moreno, A. and González, M.J. 2023. Efficient use of discarded vegetal residues as cost-effective feedstocks for microbial oil production. Biotechnol. Biofuels Bioprod. 16: 21. 84. Marques, T.R., Corrêa, A.D., Lino, J.B., Abreu, C.M. and Simão, A.A. 2013. Chemical constituents and technological functional properties of acerola (Malpighia emarginata DC.) waste flour. Food Sci. Technol. Int. 33:526–531. 85. Martin, D., Ramos, S. and Zufía, J. 2016. Valorisation of food waste to produce new raw materials for animal feed. Food Chem. 198:68–74. 86. Martins, V.F.R. 2024. Recent highlights in sustainable bio-based edible films and coatings for fruit and vegetable applications. Foods 13:318. 87. Masmoudi, M., Yaich, H., Borchani, M., Mbarki, R. and Attia, H. 2021. Chemical, physical and sensory characteristics of biscuits enriched with jujube (Zizyphus lotus L.) flour and fiber concentrate. J. Food Sci. Technol. 58: 1411– 1419. 88. Matheus, J.R.V., Andrade, C.J.M. and Fai, A.E.C. 2020. Persimmon (Diospyros kaki L.): chemical properties, bioactive compounds and potential use in the development of new products—a review. Food Rev. Int. 38: 384-401. 89. Matsakas, L., Kekos, D., Loizidou, M.D. and Christakopoulos, P. 2014. Utilization of household food waste for the production of ethanol at high dry material content. Biotechnol. Biofuels 7: 4. 90. Maurice, N. 2022. From fruit and vegetable waste to biofuel production: Part II. In: Food Waste to Green Fuel: Trend & Development. Springer Nature, Singapore, pp. 81–124. 91. Mehta, D., Prasad, P., Sangwan, R.S. and Yadav, S.K. 2018. Tomato processing byproduct valorization in bread and muffin: improvement in physicochemical properties and shelf life stability. J. Food Sci. Technol. 55:2560–2568. 92. Melissa, P.S.J., Velez Velez, G.C., Latorre Castro, G.B. and Cevallos Cedeno, R.E. 2023. Production of flour for human consumption from the reuse of organic waste. Minerva 2023: 157–66. 93. Mittal, V. and Sharma, A. 2024. From scraps to solutions: harnessing the potential of vegetable and fruit waste in pharmaceutical formulations. Lett. Funct. Foods. 1: E230124225963. 94. Moghadam, M., Salami, M., Mohammadian, M., Khodadadi, M. and Emam-Djomeh, Z. 2020. Development of antioxidant edible films based on mung bean protein enriched with pomegranate peel. Food Hydrocoll. 104:105735. 95. Nile, S.H., Nile, A., Liu, J., Kim, D.H. and Kai, G. 2019. Exploitation of apple pomace towards extraction of triterpenic acids, antioxidant potential, cytotoxic effects, and inhibition of clinically important enzymes. Food Chem. Toxicol. 131: 110563. 96. Nour, V., Ionica, M.E. and Trandafir, I. 2015. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste. J. Food Sci. Technol. 52: 8260–8269. 97. Nunes, M.A., Rodrigues, F. and Oliveira, M.B.P. 2017. Grape processing by-products as active ingredients for cosmetic purposes. In:Handbook of Grape Processing By-Products. Academic Press, pp. 267–92. 98. O’Shea, N., Arendt, E.K. and Gallagher, E. 2012.Dietary fibre and phytochemical characteristics of fruit and vegetable byproducts and their recent applications as novel ingredients in food products. Innov. Food Sci. Emerg. Technol. 16: 1–10. https://doi.org/10.1016/j.ifset.2012.06.002 99. Oh, J.H., Chung, J.O., Lee, C.Y., Yun, Y., Park, M.Y., Hong, Y.D., Kim, W.G., Cha, H.Y., Shin, K.S. and Hong, G.P. 2021. Characterized polysaccharides from green tea inhibited starch hydrolysis and glucose intestinal uptake by inducing microstructural changes of wheat starch. J. Agric. Food Chem. 69:14075–14085. 100. Orenia, R., Collado, A., Magno, M. and Cancino, L. 2018. Fruit and vegetable wastes as potential component of biodegradable plastic. Asian J. Multidiscip. Stud. 1: 61-77. 101. Osawa, K., Chinen, C., Takanami, S., Kuribayashi, T. and Kurokouchi, K. 1995. Studies on effective utilisation of carrot pomace. II. Effective utilisation to cake, dressings and pickles. Res. Rep. Nagano State Lab. Food Technol. 23: 15–18. 102. Panda, S.K. and Ray, R.C. 2015. Microbial processing for valorization of horticultural wastes. In: Environmental Microbial Biotechnology, pp. 203–221. 103. Patel, A.A., Temgire, S. and Borah, A. 2021. Agro-industrial waste as source of bioactive compounds and their utilization: a review. The Pharma Innovation 10: 192-196. 104. Peng, D., Zahid, H.F., Ajlouni, S., Dunshea, F.R. and Suleria, H.A.R. 2019. LC-ESI-QTOF/MS profiling of Australian mango peel by-product polyphenols and their potential antioxidant activities. Processes 7: 764. 105. Pilco, M.E., Masabanda, P.G. and Pilco, C.J. 2022. Potential use of citrus (peel) waste to obtain bioethanol. Int. J. Curr. Microbiol. Appl. Sci. 11: 207-214. 106. Pinto, D., de la Luz Cádiz-Gurrea, M., Silva, A.M., Delerue-Matos, C. and Rodrigues, F. 2021. Cosmetics—food waste recovery. In: Food Waste Recovery, Academic Press, pp. 503–528. 107. Priyadarshini, M., Kundu, K.K. and Bishnoi, D.K. 2020. Growth trends in area production and productivity of total horticultural crops in India (Haryana and Odisha states). Int. J. Curr. Microbiol. Appl. Sci. 9(7): 3658–3661. 108. Prodromidis, P., Mourtzinos, I., Biliaderis, C.G. and Moschakis, T. 2022. Stability of natural food colorants derived from onion leaf wastes. Food Chem. 386: 132750. 109. Rabha, L. 2021. Growth and export potential of horticultural crops from India: an overview. Econ. Aff. 66: 253–58. 110. Raj, N., Chittora, A., Bisht, V. and Johar, V. 2017. Marketing and production of fruits and vegetables in India. Int. J. Curr. Microbiol. Appl. Sci. 6: 2896–2907. 111. Rajpurohit, D. 2018. Food, chemical composition and utilization of carrot (Daucus carota L.) pomace: a review. Int. J. Chem. Sci. 6: 2921–2926. 112. Razak, A.S. and Lazim, A.M. 2015. Starchbased edible film with gum arabic for fruits coating. In: AIP Conf. Proc. 1678: 050020. 113. Real, A. 2023. Starch-based edible protective coating obtained from sweet potato waste. MET Manage. Rev. 10: 16–23. 114. Reshmy, R., Philip, E., Madhavan, A., Sindhu, R., Binod, P., Balakumaran, P.A. and Pandey, A. 2021. Potential utilisation of fruit and vegetable waste: an overview. In: Sustainable Bioconversion of Waste to Value Added Products, pp. 179–191. 115. Roda, A. and Lambri, M. 2019. Food uses of pineapple waste and by-products: a review. Int. J. Food Sci. Technol. 54: 1009-1017. 116. Roy, S. and Lingampeta, P. 2015. Solid wastes of fruits peels as source of low-cost broad spectrum natural antimicrobial compounds—furanone, furfural and benezenetriol. Int. J. Res. Eng. Technol. 3: 273–279. 117. Rusendi, D. and Sheppard, J. 1995. Hydrolysis of potato processing waste for the production of poly-β-hydroxybutyrate. Bioresour. Technol. 54:191–196. 118. Ryan, L., Mestrallet, M.G., Nepote, V., Conci, S. and Grosso, N.R. 2008. Composition, stability and acceptability of different vegetable oils used for frying peanuts. Int. J. Food Sci. Technol. 43: 193–199. 119. Sadef, Y., Javed, T., Javed, R., Mahmood, A., Alwahibi, M.S., Elshikh, M.S., AbdelGawwa, M.R., Alhaji, J.H. and Rasheed, R.A. 2022. Nutritional status, antioxidant activity and total phenolic content of different fruits and vegetables’ peels. PLoS One 17: e0265566. 120. Sadh, P.K., Duhan, S. and Duhan, J.S. 2018. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour. Bioprocess. 5: 1–15. 121. Sagar, N.A. 2018. Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Saf. 17: 512–531. 122. Sah, S., Johar, V. and Karthi, J.S. 2022. Status and marketing of fruits and vegetables in India: a review. Asian J. Agric. Ext. Econ. Sociol. 40:1–11. 123. Samaddar, P., Ok, Y.S., Kim, K., Kwon, E.E. and Tsang, D.C. 2018. Synthesis of nanomaterials from various wastes and their new age applications. J. Clean. Prod. 197: 1190-1209. 124. Sarkar, N., Ghosh, S., Bannerjee, S. and Aikat, K. 2012. Bioethanol production from agricultural wastes: an overview. Renew. Energy 37: 19–27. 125. Sasikala, M. 2022. A study on horticulture products in India. Int. J. Adv. Res. Sci. Commun. Technol. 129-132. 126. Schilderman, P.A.E.L., ten Vaaewerk, F.J., Lutgerink, J.T., Van der Wurf, A., ten Hoor, F. and Kleinjans, J. 1995. Induction of oxidative DNA damage and early lesions in rat gastrointestinal epithelium in relation to prostaglandin H synthase-mediated metabolism of butylated hydroxyanisole. Food Chem. Toxicol. 33: 99–109. 393 127. Serra, A.T., Matias, A.A., Nunes, A.V., Leitão, M.C., Brito, D., Bronze, R. and Duarte, C.M. 2008. In vitro evaluation of olive- and grapebased natural extracts as potential preservatives for food. Innov. Food Sci. Emerg. Technol. 9:311–319. 128. Shanmugavadivu, M., Kuppusamy, S. and Ranjithkumar, R. 2014. Synthesis of pomegranate peel extract mediated silver nanoparticles and its antibacterial activity. Am. J. Adv. Drug Deliv. 2: 174–182. 129. Sharma, A., Dogra, S., Thakur, B., Yadav, J., Soni, R. and Soni, S. 2023. Separate hydrolysis and fermentation of kitchen waste residues using multi-enzyme preparation from Aspergillus niger P-19 for the production of biofertilizer formulations. Sustainability 15: 9182. 130. Sharma, K.D., Karki, S., Thakur, N.S. and Attri, S. 2012. Chemical composition, functional properties and processing of carrot—a review. J. Food Sci. Technol. 49: 22–32. 131. Shin, S.-H., Chang, Y., Lacroix, M. and Han, J. 2017. Control of microbial growth and lipid oxidation on beef product using an apple peelbased edible coating treatment. LWT. 84: 183-188. 132. Siano, F., Straccia, M.C., Paolucci, M., Fasulo, G., Boscaino, F. and Volpe, M.G. 2016. Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils. J. Sci. Food Agric. 96(5):1730–1735. 133. Simonetti, G., D’Auria, F.D., Mulinacci, N., Milella, R.A., Antonacci, D., Innocenti, M. and Pasqua, G. 2017. Phenolic content and in vitro antifungal activity of unripe grape extracts from agro-industrial wastes. Nat. Prod. Res. 33: 803–807. 134. Sirisompong, W., Jirapakkul, W. and Klinkesorn, U. 2011. Response surface optimization and characteristics of rambutan (Nephelium lappaceum) kernel fat by hexane extraction. LWT Food Sci. Technol. 44: 1946–1951. 135. Smeriglio, A., Trombetta, D., Cornara, L., Valussi, M., Feo, V. and Caputo, L. 2019. Characterization and phytotoxicity assessment of essential oils from plant byproducts. Molecules 24: 2941. 136. Solís-Fuentes, J.A., Camey-Ortíz, G., Hernandez-Medel, M.D.R., Perez-Mendoza, F. and Duran-de-Bazua, C. 2010. Composition, phase behavior and thermal stability of natural edible fat from rambutan (Nephelium lappaceum) seeds. Bioresour. Technol. 101: 799–803. 137. Sowbhagya, H.B. 2019. Value-added processing of by-products from spice industry. Food Qual. Saf. 3: 73–80. https://doi.org/10.1093/fqsafe/fyy029 138. Stoffella, P.J., Ozores-Hampton, M., Roe, N.E., Li, Y. and Obreza, T.A. 2001. Compost utilization in vegetable crop production systems. In: IX Int. Symp. Timing Field Prod. Veg. Crops, 607: 125–128. 139. Sudha, M.L., Indumathi, K., Sumanth, M.S., Rajarathnam, S. and Shashirekha, M. 2015. Mango pulp fibre waste: characterization and utilization as a bakery product ingredient. J. Food Meas. Charact. 9: 382–388. 140. Sun, L., Sun, J., Thavaraj, P., Yang, X. and Guo, Y. 2017. Effects of thinned young apple polyphenols on the quality of grass carp (Ctenopharyngodon idellus) surimi during cold storage. Food Chem. 224: 372–381. 141. Tan, D., Lee, J., Foo, C.P., Tan, S.Y., Tan, J.C.W., Ong, S.S.Y. and Hashimoto, M. 2023. 3D printability and biochemical analysis of revalorized orange peel waste. Int. J. Bioprinting 9: 776. 142. Tavares, C., Martins, A., Faleiro, M., Miguel, M., Duarte, L., Gameiro, J., Roseiro, L. and Figueiredo, A. 2020. Bioproducts from forest biomass: essential oils and hydrolates from wastes of Cupressus lusitanica Mill. And Cistus ladanifer L. Ind. Crops Prod. 144: 112034. 143. Tuğba, I., Medeni and Maskan 2012. The potential application of plant essential oils/ extracts as natural preservatives in oils during processing: a review. J. Food Sci. Eng. 2: 1–9. 144. Ul-Islam, M., Ul-Islam, S., Yasir, S., Fatima, A., Ahmed, M.W., Lee, Y.S., Manan, S. and Ullah, M.W. 2020. Potential applications of bacterial cellulose in environmental and pharmaceutical sectors. Curr. Pharm. Des. 26: 5793-5806. 145. Varzakas, T., Zakynthinos, G. and Verpoort, F. 2016. Plant food residues as a source of nutraceuticals and functional foods. Foods 5:1–32. https://doi.org/10.3390/foods5040088 146. Viana, E.D.S., Souza, A.D.S., Reis, R.C. and Oliveira, V.J.D.S.D. 2018. Aplicação de farinha de banana verde na substituição parcial da farinha de trigo em pão de forma. Semina: Ciênc. Agrár. 39: 2399–2408. 147. Visakh, N.U., Pathrose, B., Narayanankutty, A., Alfarhan, A.A. and Ramesh, V. 2022. Utilization of pomelo (Citrus maxima) peel waste into bioactive essential oils: chemical composition and insecticidal properties. Insects 13: 480. 148. Vu, H.T., Scarlett, C.J. and Vuong, Q.V. 2017. Effects of drying conditions on physicochemical and antioxidant properties of banana (Musa Cavendish) peels. Drying Technol. 35: 1141–1151. 149. Wadhwa, M., & Bakshi, M. P. S. (2016). Application of waste-derived proteins in the animal feed industry. In Protein byproducts (pp.161-192). Academic press. 150. Waghmare, A.G. and Arya, S.S. 2016. Utilization of unripe banana peel waste as feedstock for ethanol production. Bioethanol 2: 146–156. 151. Wei, M., Wang, H., Ma, T., Ge, Q., Fang, Y. and Sun, X. 2021. Comprehensive utilization of thinned unripe fruits from horticultural crops. Foods 10: 2043. 152. Xu, Y., Fan, M., Ran, J., Zhang, T., Sun, H., Dong, M. and Zheng, H. 2016. Variation in phenolic compounds and antioxidant activity in apple seeds of seven cultivars. Saudi J. Biol. Sci. 23: 379–388. 153. Yadav, H.A., Eraiah, B., Basavaraj, R.B., Nagabhushana, H., Darshan, G.P., Sharma, S.C., ... and Shanthi, S. 2018. Rapid synthesis of C-dot@ TiO2 core-shell composite labeling agent: probing of complex fingerprints recovery in fresh water. J. Alloys Compd. 742: 1006– 1019. 154. Yanty, N.A.M., Marikkar, J.M.N., Long, K. and Ghazali, H.M. 2013. Physico-chemical characterization of the fat from red-skin rambutan (Nephelium lappaceum) seed. J. Oleo Sci. 62: 335–343. 155. Yavuzer, E. 2023. Investigation of the use of waste commercial plant pulps as edible fish coating material. Turk. J. Agric. Food Sci. Technol. 768-773. 156. Zhang, Y.M. 2020. Nutritive composition, thermal in vitro digestibility and crystallinity properties of starch extracted from potato tubers stored for a short term. Int. J. Food Nutr. Sci. 1: 101. 157. Zhong, C. 2020. Industrial-scale production and applications of bacterial cellulose. Front. Bioeng. Biotechnol. 8: 605374. 158. Zhu, Y., Luan, Y., Zhao, Y., Liu, J., Duan, Z. and Ruan, R. 2023. Current technologies and uses for fruit and vegetable wastes in a sustainable system: a review. Foods 12: 1949.
References
Similar Articles
- Ramya Sree M., Sanjay Kumar Singh, Jai Prakash, Chavlesh Kumar, Megha R., Molecular detection of powdery mildew resistance in indigenous and exotic Vitis genotypes , Indian Journal of Horticulture: Vol. 82 No. 01 (2025): Indian Journal of Horticulture
- Kajal K Biswas, Shruti Godara, Dipak Nayak, Distribution of Citrus tristeza virus in the Darjeeling hills and their biological symptoms in mandarin orchards , Indian Journal of Horticulture: Vol. 71 No. 03 (2014): Indian Journal of Horticulture
- R.S. Spehia, B.C. Thakur, J.N. Raina, Effect of in-situ conservation practices on soil properties and yield of broccoli under rainfed conditions of mid hill zone of Himachal Pradesh , Indian Journal of Horticulture: Vol. 69 No. 01 (2012): Indian Journal of Horticulture
- G. Suja, A.N. Jyothi, G. Byju, S.S. Veena, J. Sreekumar, M. Indira, V. Ravi, Organic management fosters yield, soil health and profit in dwarf white yam , Indian Journal of Horticulture: Vol. 77 No. 01 (2020): Indian Journal of Horticulture
- M. Prabhakar, S.S. Hebbar, A.K. Nair, K.S. Shivashankara, J.K. Chinnu, G.A. Geetha, Effect of different organic nutrient levels on growth, yield and quality in cauliflower , Indian Journal of Horticulture: Vol. 72 No. 02 (2015): Indian Journal of Horticulture
- Raju Lal Bhardwaj, Aabha Parashar, Premlata Meena , K. Choudhary, Enhancing nutritional quality of vegetables through sustainable soil microbial approaches , Indian Journal of Horticulture: Vol. 82 No. 01 (2025): Indian Journal of Horticulture
- Damandeep Singh, W.S Dhillon, N.P Singh, P.P.S Gill, Impact of girdling on quality and maturity of Patharnakh pear , Indian Journal of Horticulture: Vol. 71 No. 03 (2014): Indian Journal of Horticulture
- Minimol J.S., Prasannakumari Amma, Suma B., Shahanas E., Breeding cycle of fifth generation inbred of cocoa and performance analysis of progenies over generations , Indian Journal of Horticulture: Vol. 72 No. 04 (2015): Indian Journal of Horticulture
- Zulfikar Ali, Girish Korekar, Sunil Mundra, Ashish Yadav, Tsering Stobdan, Quality attributes of seabuckthorn squash during storage , Indian Journal of Horticulture: Vol. 68 No. 04 (2011): Indian Journal of Horticulture
- M. Sankaran, M.R. Dinesh, D.C. Sunil Gowda, K.V. Ravishankar, Development of interspecific hybrid progenies of mango and their characterization , Indian Journal of Horticulture: Vol. 77 No. 01 (2020): Indian Journal of Horticulture
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.
