The Explainable AI for mango leaf disease detection: bridging the gap between model accuracy and farmers usability
Downloads
Published
DOI:
https://doi.org/10.58993/ijh/2025.82.3.16Keywords:
Precision agriculture, monitoring, IoT, mango leaf disease, CNN modelIssue
Section
License
Copyright (c) 2025 Mohammad Nasar, Md. Abu Kausar, Md Abu Nayyer, Vikash Kumar, Md. Arshad Anwer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Mango leaf diseases can seriously impact on the yield and vitality of mango trees, resulting in considerable financial losses. Prompt and precise identification of these diseases are essential for facilitating quick action and improving agricultural management practices. In the past few years, convolutional neural network (CNN) models have gained significant popularity towards image recognition and classification. Using CNN models, approaches for image-based disease diagnosis in the crops have become increasingly popular within the current scientific community. Mango leaves disease represents considerable threats to mango cultivation globally, making it essential to develop precise and efficient classification methods for timely disease control. Our research focuses on introducing an Explainable AI (XAI) framework that incorporates a modified VGG-16 CNN, alongside Gradient-weighted Class Activation Mapping (Grad-CAM), to recognize seven major mango leaf diseases using the publicly available MangoLeafBD dataset (3,500 images across seven classes). Our model demonstrated outstanding effectiveness in classification, achieving 92.8% accuracy, while as providing precise and graphical explanations to enhance use and foster farmer trust. Our results provide important insights for implementing CNN models that improve the accuracy and effectiveness of monitoring plant diseases in agricultural environments, ensuring greater clarity in model decision-making to optimize the framework for low-resource devices, expanding the dataset to include diverse mango varieties, and exploring multi-crop applications.Abstract
How to Cite
Downloads
1. Arya, S. 2021. Mango Leaf Disease Dataset, Kaggle, [Online]. Available: https://www.kaggle.com/datasets/aryashah2k/mango-leaf-disease-dataset 2. Ahmad, I., Muthukumar, M., Verma, J.P., Bajpai, A. and Rajan, S. 2019. Molecular fingerprints and genetic relatedness of traditional mango cultivars using SSR markers. Indian J. Hort. 76: 1-7. DOI : 10.5958/0974-0112.2019.00001.X 3. FAO, Major tropical fruits market review– preliminary results 2024. https://openknowledge.fao.org/server/api/core/bitstreams/c483f555-3a10-463f-8677-c021315c8ebc/content. (Accessed 28 July 2025). 4. Karim, M. J., Goni, M. O. F., Nahiduzzaman, M., Ahsan, M., Haider, J. and Kowalski, M. 2024. Enhancing agriculture through real-time grape leaf disease classification via an edge device with a lightweight CNN architecture and Grad-CAM. Scientific Reports, 14(1), 16022. https://doi.org/10.1038/s41598-024-66989-9 5. Mahbub, N. I., Naznin, F., Hasan, M. I., Shifat, S. M. R., Hossain, M. A. and Islam, M. Z. 2023. Detect Bangladeshi Mango Leaf Diseases Using Lightweight Convolutional Neural Network. Int. Conf. Electr. Comput. Commun. Eng. (ECCE) (pp. 1–6). IEEE. https://doi.org/10.1109/ECCE57851.2023.10101648 6. Nargundkar, V., Tiwari, A.K., Prabha, R., Jain, R., Singh, B., Shreekant.,Pruthvi M.S. and Kumar, G. 2025. Bibliometric analysis for advancing chrysanthemum research in India. Indian J. Hortic. 82: 94-99. 7. Prabu, M. and Chelliah, B.J. 2022. Mango leaf disease identification and classification using a cnn architecture optimized by crossover-based Levy flight distribution algorithm. Neural Comput. Appl. 34: 7311-7324. https://doi.org/10.1007/s00521-021-06726-9 8. Puranik, S.S., Hanamakkanavar, S.R., Bidargaddi, A.P., Ballu, V.V., Joshi, P.T. and Meena, S.M. 2024. MobileNetV3 for Mango Leaf Disease Detection: An efficient Deep Learning Approach for Precision Agriculture. In 2024 5th Int. Conf. Emerg. Technol. (INCET) (pp. 1–7). IEEE. https://doi.org/10.1109/INCET61516.2024.10593318 9. Rayed, M.E., Jim, J.R., Islam, M.J., Mridha, M.F., Kabir, M.M. and Hossen, M.J. 2025. MangoLeafXNet: An Explainable Deep Learning Model for Accurate Mango Leaf Disease Classification. IEEE Access, 13, 93977–94008. https://doi.org/10.1109/ACCESS.2025.3571450 10. Rizvee, R.A., Orpa, T.H., Ahnaf, A., Kabir, M.A., Rashid, M.R.A., Islam, M.M., Islam, M., Jabid, T. and Ali, M.S. 2023. LeafNet: A proficient convolutional neural network for detecting seven prominent mango leaf diseases. Journal of Agriculture and Food Research, 14: 100787. https://doi.org/10.1016/j.jafr.2023.100787 11. Saleem, R., Shah, J. H., Sharif, M., Yasmin, M., Yong, H. S. and Cha, J. 2021. Mango Leaf Disease Recognition and Classification Using Novel Segmentation and Vein Pattern Technique. App. Sci., 11: 11901. https://doi.org/10.3390/app112411901 12. Saleem, S., Sharif, M.I., Sharif, M.I., Sajid, M.Z. and Marinello, F. 2024. Comparison of Deep Learning Models for Multi-Crop Leaf Disease Detection with Enhanced Vegetative Feature Isolation and Definition of a New Hybrid Architecture. Agronomy, 14: 2230. https://doi.org/10.3390/agronomy14102230 13. Salimath, M., Kaliannan, N., Ranjan, S. and Prabhakar, V. 2025. Optimizing tomato production with IoT-enabled precision irrigation: A case study of water and fertilizer management. Indian J. Hortic. 82: 188-194. DOI 10.58993/ijh/2025.82.2.10 14. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.C. 2019. Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4510-4520 15. Saravanan, T.M., Jagadeesan, M., Selvaraj, P.A., Aravind, M., Raj, G.D. and Lokesh, P. 2023. Prediction of Mango Leaf Diseases using Convolutional Neural Network. International Conference on Computer Communication and Informatics (ICCCI) (pp. 1–4). IEEE. https://doi.org/10.1109/ICCCI56745.2023.10128578 16. Ünal, Y. and Türkoğlu, M. 2025. Mango leaf disease detection using deep feature extraction and machine learning methods: A comparative survey. El-Cezeri J. Sci. Eng. 12: 35–43. https://doi.org/10.31202/ecjse.1420624 17. Xu, L., Cao, B., Zhao, F., Ning, S., Xu, P., Zhang, W. and Hou, X. 2023. Wheat leaf disease identification based on deep learning algorithms. Physiol. Mol. Plant Pathol. 123: 101940. https://www.sciencedirect.com/science/article/pii/S0885576522001552 18. Zaman, S., Nur, A.H., Sulaiman, R.B., Aljaidi, M., Uddin, M.N. and Hadi, W. 2025. Transforming Mango Cultivation: A Deep Learning Approach for Leaf Disease Detection. 1st Int. Conf. Comput. Intell. Approaches Appl. (ICCIAA) (pp. 1–7). IEEE. https://doi.org/10.1109/ICCIAA65327.2025.11013713
References
Similar Articles
- Nur Syazwani Hamid, Boon Chin Tan, Norzulaani Khalid, Normaniza Osman, Mahanom Jalil, Adaptive features of in vitro-derived plantlets of MD2 pineapple during acclimatization process , Indian Journal of Horticulture: Vol. 77 No. 04 (2020): Indian Journal of Horticulture
- Puskar Chaudhary, R.A. Kaushik, R.S. Rathore, M. Sharma, M.K. Kaushik, Improving growth, yield and quality of Kinnow mandarin through foliar application of potassium and zinc , Indian Journal of Horticulture: Vol. 73 No. 04 (2016): Indian Journal of Horticulture
- Manpreet Singh Preet, Rajesh Kumar, V.P Singh, Neha ., Ankit Dongariyal, Ranjan Srivastava, Response of guava to integrated nutrient and water management , Indian Journal of Horticulture: Vol. 78 No. 02 (2021): Indian Journal of Horticulture
- S. Mishra, M.R. Choudhary, B.L. Yadav, S.P. Singh, Studies on the response of integrated nutrient management on growth and yield of ber , Indian Journal of Horticulture: Vol. 68 No. 03 (2011): Indian Journal of Horticulture
- YRahul Chandel, A. T. Sadashiva, T. H. Singh, Evaluation of tomato parental lines for leaf curl disease resistance and its validation through molecular markers , Indian Journal of Horticulture: Vol. 76 No. 04 (2019): Indian Journal of Horticulture
- Vijay Rakesh Reddy, S.R.R. Sharma, Manish Srivastav, Charanjit Kaur, Effect of pre-harvest application of salicylic acid on postharvest behaviour of 'Amrapali' mango fruits during storage , Indian Journal of Horticulture: Vol. 73 No. 03 (2016): Indian Journal of Horticulture
- D. Barman, T.U. Bharathi, R.P. Medhi, Effect of media and nutrition on growth and flowering of Cymbidium hybrid ‘H.C. Aurora , Indian Journal of Horticulture: Vol. 69 No. 03 (2012): Indian Journal of Horticulture
- Rucku Gupta, V K Wali, Parshant Bakshi, Mahital Jamwal, Pramod Kumar, Rafiq Ahmed, Assessment of callus induction and plant regeneration potential of leaf explants derived from in vitro and in vivo shoot of strawberry , Indian Journal of Horticulture: Vol. 77 No. 01 (2020): Indian Journal of Horticulture
- Geeta Chandola, V. K. Rao, Birendra Prasad, Influence of priming and packaging materials on quality attributes of African marigold (Tagetes erecta L.) seeds , Indian Journal of Horticulture: Vol. 82 No. 01 (2025): Indian Journal of Horticulture
- K. Prasad, R.R. Sharma, R.R. Sharma, Manish Srivastav, Shruti Sethi, Effect of hot water treatment on the incidence of lenticel browning and quality of mango fruits , Indian Journal of Horticulture: Vol. 73 No. 04 (2016): Indian Journal of Horticulture
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
