Response of some wild species of tomato against Peanut bud necrosis virus under open-field conditions
Downloads
Published
Keywords:
Solanum lycopersicum, S. peruvianum, peanut bud necrosis virus.Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Thrips-borne Tospovirus pathogens adversely affect many globally important crops. Among 16 distinct virus species in the Tospovirus genus, four species including Peanut bud necrosis virus (PBNV) causing necrosis disease in tomato have been reported in India. Identification of stable sources and further utilization of wild relatives as gene sources to increase levels and diversify the bases of resistance may offer good management for the disease. A total of 13 wild species of tomato (Solanum peruvianum), two S. pimpinellifolium, one S. chilense, one S. pennellii and three check cultivars (S. lycopersicum) along with two cultivars (S. lycopersicum) having the Sw-5 and Sw-7 genes were evaluated under field conditions during three consecutive seasons (June to October 2008, July to December 2009, August 2010 to February 2011). Among all, a high degree of field resistance (>80%) was detected in seven lines of S. peruvianum (L00735, L00671, L00887, L06138), S. chilense (TL02226) and S. pimpinellifolium (L03708, TL02213) lines. The field data was also supported by negative reaction against a polyclonal antiserum of the nucleocapsid protein (N) of PBNV in direct antigen coating-enzyme linked immunosorbent assay (DAC-ELISA). The cultivars with Sw-5 and Sw-7 genes were highly susceptible to PBNV.Abstract
How to Cite
Downloads
Anonymous, 2010. Package of practices of the important horticultural crops of Andhra Pradesh. YSR Hortl. Univ., West Godavari district. Akram, M., Jain, R.K., Vikas Chaudhary, Ahlawat, Y.S., and Khurana, S.M.P. 2004. Comparison of groundnut bud necrosis virus isolates based on movement protein (NSm) gene sequences. Ann. Appl. Biol. 145: 285-89. Campbell, C.L. and Madden, L.V. 1990. Introduction to Plant Disease Epidemiology, John Wiley and Sons, New York, 532 p. Cho, J.J., Mau, R.F.L., Hamasaki, R.T. and Gonsalves, D. 1988. Detection of Tomato spotted wilt virus in individual thrips by enzymelinked immunosorbent assay. Phyotopath. 78: -52. de Avila, A.C., de Hann, P., Kormelink, R., Resende, R.deo., Kitajima, E.W., Goldbach R.E. and Peters, J.R. 1993. Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. J. General Virol. : 153-59. Gordillo, L.F., Stevens, M.R., Millard, M.A. and Geary, B. 2008. Screening two Lycopersicon peruvianum collections for resistance to Tomato spotted wilt virus. Pl. Dis. 92: 694-04. Greenough, D.R., Black, L.L. and Bond, W.P. Aluminum-surfaced mulch: an approach to control of Tomato spotted wilt virus in solanaceous crops. Pl. Dis. 74: 805-08. Jain, R.K., Umamaheswaran, K., Bhat, A.I., Thien, H.X. and Ahlawat, Y.S. 2002. Necrosis disease on cowpea, mungbean and tomato is caused by groundnut bud necrosis virus. Indian Phytopath. 55: 354 Krishna Kumar, N.K., Ullman, N.K. and Cho, J.J. Evaluation of Lycoperscion germplasm for tomato spotted wilt tospovirus resistance by mechanical and thrips transmission. Pl. Dis. 77: -41 Krishna-Kumar N.K., Ullman, D.E. and Cho, J.J. Resistance among Lycopersicon species to Frankliniella occidentalis (Thysanoptera: Thripidae). J. Ecol. Entomol. 88: 1057-65. Paterson, R.G., Scott, S.J. and Gergerich, R.C. Resistance in two Lycopersicon species to an Arkansas isolate of Tomato spotted wilt virus. Euphytica, 43: 173-78 Qui, W.P. and Moyer, J.W. 1999. Tomato spotted wilt tospovirus adapts to TSWV N gene-derived resistance by genome reassortment. Phytopath. : 575-82 Rosello, S., Diez, M.J., Lacasa, A., Jorda, C. and Nuez, F. 1997. Testing resistance to TSWV introgressed from Lycopersicon peruvianum by artificial transmission techniques. Euphytica, 98: -98. Sain, S.K. and Chadha, M.L. 2007. Major viral diseases incidence on important vegetable crops in Hyderabad. In: 10th International Plant Virus Epidemiology Symposium’ Controlling Epidemics of Emerging and Established Plant Virus Diseases-The Way Forward, 15-19 Oct , ICRISAT, Patancheru, India, p. 114. Singh, B.R. and Tripathi, D.P. 1991. Loss due to leaf curl and spotted wilt diseases of tomato. Madras Agric. J. 78: 34-36 Snedecor, G.W. and Cochran, W.G. 1980. Statistical Methods (7th edn.), The Iowa University Press, Ames, Iowa, USA, 507 p. Stevens, M.R., Scott, S.J. and Gergerich, R.C. Evaluation of seven Lycopersicon species for resistance to Tomato spotted wilt virus (TSWV). Euphytica, 80: 79-84. Swift, C.E. 2006. Fact sheet on Tomato spotted wilt virus. Tri river area, Colorado State University Cooperative Extension.2775 US Hwy 50. http:// www.ext.colostate.edu. Soler, S., Cebolla-Cornejo, J. and Nuze, F. 2003. Control of diseases induced by tospoviruses in tomato: an update of the genetic approach. Phytopath. Mediterr. 42: 207-19. Zaccardelli, M., Perrone, D., Galdo, A. Del., Campanile, F., Parrella, G. and Giordano, I. Tomato genotypes resistant to Tomato spotted wilt virus evaluated in open field crops in Southern Italy. Acta Hort. 789: 147-49.
References
Similar Articles
- Amanpreet Kaur, R.K. Dubey, Simrat Singh, Effect of different potting media on growth and flowering of kalanchoe (Kalanchoe blossfeldiana Poelln.) , Indian Journal of Horticulture: Vol. 72 No. 03 (2015): Indian Journal of Horticulture
- Amarjeet Singh, L.N. Mahawer, H.L. Bairwa, Evaluation of perennial chrysanthemum cultivars under sub-humid southern plains and Aravali hills of Rajasthan , Indian Journal of Horticulture: Vol. 74 No. 03 (2017): Indian Journal of Horticulture
- J.K. Ranjan, S.K. Singh, A.K. Chakrabarti, Pragya ., In vitro shoot regeneration from cotyledonary leaf explant in chilli and bio-hardening of plantlets , Indian Journal of Horticulture: Vol. 67 No. 01 (2010): Indian Journal of Horticulture
- P. Jayaprakash, Sheeba D, Vikas ., V. K., Sivasamy M, T. Sabesan, Development of pollen germination medium to test pollen viability of eggplant and its wild species , Indian Journal of Horticulture: Vol. 75 No. 02 (2018): Indian Journal of Horticulture
- Anshuman Singh, Effect of salinity on gas exchange parameters and ionic relations in bael (Aegle marmelos Correa) , Indian Journal of Horticulture: Vol. 73 No. 1 (2016): Indian Journal of Horticulture
- Shubham Priyadarshi, R. B. Verma, Role of plant growth regulators on seed quality and seed yield of bitter gourd (Momordica charantia L.) , Indian Journal of Horticulture: Vol. 82 No. 01 (2025): Indian Journal of Horticulture
- Afshan Rabnawaz, Riaz Ahmad, Muhammad Akbar Anjum, Effect of seed priming on growth, flowering and cut flower quality of carnation , Indian Journal of Horticulture: Vol. 77 No. 03 (2020): Indian Journal of Horticulture
- Sanjay Kumar Singh, Pragya Kumari, Sanjay Vyas, Vishal Nath, Influence of chemicals and girdling on tree physiology and fruiting of litchi , Indian Journal of Horticulture: Vol. 78 No. 03 (2021): Indian Journal of Horticulture
- S. Das, A.B. Mandal, P. Hazra, Genetic diversity in brinjal genotypes under eastern Indian conditions , Indian Journal of Horticulture: Vol. 67 No. Special Issue (2010): Indian Journal of Horticulture
- Priyanka Kumari, Thupten Tsomu, A. K. Singh, Ampee Tasung, Ashim Debnath, M. M. Sharma, Samikhya Bhuyan, Duyi Samyor, Tijeshwari Sahu, Yogendra Kumar, Study on the physiological impact of salicylic acid and kinetin on growth dynamics, floral morphogenesis and seed yield of Sweet William , Indian Journal of Horticulture: Vol. 81 No. 02 (2024): Indian Journal of Horticulture
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.