New paradigm shifts in micropropagation of fruit crops through bioreactors - a review
Downloads
Published
DOI:
https://doi.org/10.58993/ijh/2024.81.1.1Keywords:
Bioreactor, temporary immersion system (TIS), continuous immersion system (CIS), RITAIssue
Section
License
Copyright (c) 2024 Indian Journal of Horticulture
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
within relatively shorter periods, as well as significant reductions in hyperhydricity in plants as a result of efficient gas exchange, oxygen supplementation and automation, bioreactors, specifically temporary immersion systems (TIS), are being utilized for mass multiplication of forestry and horticultural crops. In tissue culture of banana, date palm, strawberrys, papaya, citrus, grape, pineapple, apple, pear, plum, chestnut, pistachio nut, apricot, sweet cherry, and almond, a variety of TIS bioreactors were used, including RITA, Plantform, SETIS and twin glass airlifts. TIS Bioreactors need to be improved in terms of space utilization. The space utilization was found to be highest with the Plantform system (80%) and lowest in the Twin Flask system (26%). Higher head space provides better plant growth and lesser fogging on the walls of the bioreactor. Most bioreactors have not been designed to facilitate better root production in vitro. Roots get coiled and cluttered, which needs improvement in design. The provision of illumination in each tank will facilitate better morphogenesis. This paper describes the micropropagation of fruit crops using different TIS bioreactors.Abstract
How to Cite
Downloads
Abahmane, L. 2020. A comparative study between temporary immersion and semi solid cultures on shoot multiplication and plantlets production of two Moroccan date palm (Phoenix dactylifera) varieties in vitro. Notulac Scientia Biologiac, 12 (2):277-288 Abdulmalik, M.M., Usman, I.S., Nasir, A.U. and Sani, L.A. 2019. Micropropagation of banana (Musa spp) using temporary immersion system, BAJOPAS, 12 (2) :197-200 Akademir, H., Syzeres, V., Onay, A., Tilkat, E., Ersali, Y. and Cliffci, Y.O. 2014. Micropropagation of pistachio and its rootstocks by temporary immersion system. Pl. Cell. Tiss. Org. Cult., 117: 65-76 Adelberg, J. and Simpson, E.P. 2002. Intermittent Immersion Vessel Apparatus and Process for Plant Propagation. US patent pending, Publ. US2002/0155595 A1 Alkyhari, J.M. and Naik, P.M. 2017. Date palm micropropagation. Advances and Application. Ciencia e Agrotech, 41(4): 347-358 Aitken-Christie, J. and Davies, H. E. 1988. Development of a semi-automated micropropagation system. Acta Hortic. 230, 81–88. Ayenew, B. 2013. Efficient use of temporary immersion bioreactor on pine apple multiplication and rooting abiliyu. J. Microb. Biotech. & Food Sci., 2(4): 2456-2465 Alkhateeb, A.A. and Alturki, S.M. 2014. A comparision of liquid and semi solid culture on shoot proliferation and rooting of three date palm cultivars (Phonenix dactylifera L.) in vitro. Advances Environ. & Biol., 89(6):263-269 Almusawi, A.H.A., Sayegh, A.J., Alshanaw, A.M.S. and Griffis, J.L. Jr. 2017. Plantform bioreactor for mass micropropagation of date palm. Methods Mol Biol.,1637:251-265 Arruda, A.L., Nerbass, F.R., Kretzschmar, A.A., Rufato, L., Posser, A.J., Fagherazzi, M.M., Silva, P.S. and Welter, J.F. 2021. Use of temporary immersion bioreactors and solid culture medium in the in vitro propagation of pear rootstocks. Acta Hortic. 1303, 113-120 Bello-Bello, J.J., Cruz-Cruz, C.A. & Pérez-Guerra, J.C. 2019. A new temporary immersion system for commercial micropropagation of banana (Musa AAA cv. Grand Naine). In Vitro Cell.Dev. Biol.-Plant, 55, 313–320. Boxus, P. 1992. Mass propagation of strawberry and new alternatives for some fruit crops. In: Transplant Production System. Kurater, K and Kozai, T. (Eds) Kluwer: Dordrecht, pp151-102 Ayenew, B., Tadesse, T., Gebremariam, E., Mengesha, A., and Tefera, W. 2013. Efficient use of temporary immersion bioreactor on pine apple (Ananas comosus L.) multiplication and rooting ability . J. Microbiol. Biotech & Food Sci., 2 (4) :2456-2465 Cabasson, C., Alvard, D. and Dambier, D. 1997. Improvement of Citrus somatic embryo development by temporary immersion. Plant Cell, Tissue and Organ Culture, 50, 33–37 (1997). Cronauer, S.S. and Krikorian, A.D. 1984. Multiplication of Musa from excised stem tips. Annals Bot, 53:321-328 Chakrabarty, S., Hahn, E.J., Yoon, Y.J. and Paek, K.Y. 2003. Micropropagation of apple rootstock M9 EMLA using bioreactor. J. Hort. Sci. Biotech., 78(6):605-609 Carlo, A.D., Tarraf, W., Lambardi, M. and Benelli, C. 2021. Temporary immersion system for production of biomass and bioactive compounds from medicinal plants. Agron, 11:2414 Carlos, A. 2012. The potential of TIS in meeting crop production demand in Nigeria. J. Biol. & Life Sci. 3(1):66-86 Corona, J., Pastelín, M., Castañeda, O., Solano, L. and Hernadez, K. 2019. Micropropagation of ‘MSXJ’ hybrid of papaya in temporary immersion systems. Acta Hort., 1250, 19 Damodaran, T., Gopal, S., Yadav, A., Shukla, P.K., Muthukumar, M., Kumari, N., Ahmad, I., Jha, S., & Deepak, N. 2019. Successful community-based management of banana wilt caused by Fusarium oxysporum f.sp. cubense Tropical race-4 through ICAR-FUSICONT. J Appl Hort, 21(1):33-47 Damodaran, T., Mishra, M., Muthukumar, M., Rajan, S., Yadav, K., Kumar, A., Debnath, P., Kumari, S., Bora, P., Gopal, R. and Kumar, S. 2023. Secondary metabolite induced tolerance to Fusarium oxysporum f.sp. cubense TR4 in banana cv. Grand Naine through in vitro bio-immunization: a prospective research translation from induction to field tolerance. Front. Microbiol. 14:1233469https://doi.org/10.3389/fmicb.2023.1233469 Debnath, S., Bioreactors and molecular analysis in berry crop micropropagation—a review. Can. J. Plant Sci. 2011, 91, 147–157 Escalona, M., Lorenzo, J. and González, B (1999). Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep, 18, 743–748 Ebrahimi, M., Habashi, A.A. and Emadpour, M. 2022. Recovery of virus-free Almond (Prunus dulcis) cultivars by somatic embryogenesis from meristem undergone thermotherapy. Sci. Rep, 12, 14948 Farahani, F. and Majd, A. 2012. Comparision of liquid culture media and effect of TIB on growth and multiplication of banana (Musa cv. Dwarf Cavendish). Af. J. Biotech., 11 (33): 8302-8308 Fitch, M.M.M. and Manshardt, R.M. 1990. Somatic embryogenesis and plant regeneration from immature zygotic embryos of papaya (Carica papaya L.). Plant Cell Rep, 9, 320–324 Fki, L., Bouaziz, N., Kriaa, W., Benjema-Masmoudi, R., Gorgouri-Bouzid, R., Rival, A. and Dirra, N. 2011. Multiple bud culture of Barhee date palm and physiological status of date palm. J. Pl. Physiol., 168(14): 1694-1700 Georgiev, V., Schumann, A., Pavlov, A. and Bley, T. 2014. Temporary immersion system in plant biotechnology. Eng. Life Sci., 14:607-621 Georgieva, L.I., Tsvetko, M., Geogieva and Kondakova, V. 2016. New protocol for in vitro propagation of berry plants by its bioreactor. Bulg. J. Agril. Sci., 22(5):745-751 Godoy, S., Tapia, E., Seit, P. and Andrade, D. Sanchez, E., Andrade, P., Almeida, A.M. and Prieto, H. 2017. Temporary immersion system for mass propagation of sweet cherry cultivars and cherry rootstocks: development of a micropropagation procedure and effect of culture condition on plant quality. In vitro Cell. Dev. Biol- Plant, 53(5): 494–504 Gomez, R., Garcia, J., Mendoza, J., Pina, F., Santos-Ordonez, E., Armas, M. and Flores, J. 2020. Establishment of papaya (Carica papaya L.) micropropagation protocol in a temporary twin vessel immersion system. Pl. Cell Biotech. Mol. Biol., 21(13-14), 1-6. González-Olmedo, J.L., Fundora, Z.,. Molina, L.A., Abdulnour, J., Desjardins, Y. and Escalona, M. 2005. New Contributions to Propagation of Pineapple (Ananas comosus L. Merr) in Temporary Immersion Bioreactors In Vitro . Cel. & Devel. Biol. Plant, 41 ( 1): 87-90 Hanhineva, K., Kokko, H. and Kärenlampi, S. 2005. Shoot regeneration from leaf explants of five strawberry (Fragaria × Ananassa) cultivars in temporary immersion bioreactor system. In Vitro Cell.Dev.Biol.-Plant 41, 826–831 (2005). Hawang, H.D., Kwon, S.H., Murthy, H.N., Yun, S.W., Pyo, S.S. and Park, S.Y. 2022. Temporary immersion bioreactor system as an efficient method for mass production of in vitro plants in horticulture and medicinal plants. Agron, 12, 346 Kana, E.B.G., Oloke, J.K., Lateef, A., Azhafack, R.H. and Adeyemii, A. 2010. Implementation details of computerized temporary immersion bioreactor: A fermentation case of Pleurotus pulmonarius. Biotechnolo. & Biotechnol. Eq. 24: 2114-2153 Khafri, A.Z., Solouki, M., Zarghami, R. and Fakhri, B.A. 2020. In vitro propagation of three Iranian apricot cultivars. In Vitro Cellular Develop. Pl., 57 (1):1-16 Kim, N.Y., Hwang, H.D., Kim, J.H. 2020. Efficient production of virus-free apple plantlets using the temporary immersion bioreactor system. Hortic. Environ. Biotechnol, 61, 779–785 (2020). Kryukov, L.A., Vodolazhsky, D.I., Kamenetsky-Goldstein, R. 2022. Micropropagation of grapevine and strawberry from south Russia: rapid production and genetic uniformity. Agron.,12 (308):3-10 Litz, R.E. & Conover, R.A. 1978 Tissue culture propagation of Papaya. Proc. Fla. State Hort. Soc. 90, 245-246. Madhulatha, P., Anbalagan, M., Jayachandran, S. et al. 2004. Influence of Liquid Pulse Treatment with Growth Regulators on in vitro Propagation of Banana (Musa spp. AAA). Plant Cell, Tiss.Organ Cul., 76, 189–192 Mirzabe, A.M., Hajiahmad, A., Fadavi, A. and Rafiee, S. 2022. Temporary immersion systems (TISs): A comprehensive review, J. Biotech., 357: 56-83, Mishra, M., Shukla, N. and Chandra R. 2007. Micropropagation of papaya (Carica papaya L.) In: Protocols for Micropropagation of woody trees and fruits. Jain, S.M. and Hggman, H. (Eds).Springer, pp 4437-441 Mishra, M., Pati, R. and Chandra, R.2006. Clonal micropropagation of Indian gooseberry (Emblica officinalis Gaertn). Ind. J. Genet, Plant Breed, 66(4):359-360 Mishra, M., R. Chandra and Pati,R. 2008. In vitro regeneration of Aegle marmelos Corr. And genetic fidelity testing of micropropagated plants through molecular markers. Ind.J.Hort, 65 (1) 6-11 Mishra, M. Shree, Y., Pati, R., Seal,S., Shukla,N.,Kamle,M., Chandra, R. and Srivastava,A. 2010. Micropropagation of Mangifera indica L. cv. Kurukkan through somatic embryogenesis. Ind. J. Genet, 70(1):1-6 Nagori, R. and Purohit, S.D. 2004. In vitro plantlet t regeneration in Annona squa-mosa through direct shoot bud differentiation on hypocotyl segments. Scientia Hort., 99 , 89-98 Othmani, A., Bayoudh, C., Sellemi, A. and Dria, N. 2017. Temporary immersion system for date palm Micropropagation. Methods mol. Biol., 1637:239-249 Perez, R. M., and P. C. Debergh. 1999. Temporary immersion: an alternative culture system for Citrus embryogenic cell cultures." Mededelingen-Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent (Belgium) Posada-Pérez, L., Montesinos, Y.P., Guerra, D.G. 2017. Complete germination of papaya (Carica papaya L. cv. `Maradol Roja´) somatic embryos using temporary immersion system type RITA® and phloroglucinol in semi-solid culture medium. In Vitro Cell.Dev.Biol.-Plant , 53, 505–513. Rajmohan, K. 2011. Date palm tissue culture. A pathway to rural development. In: Date Palm Biotechnology. Jain, S.M., Alkhayri, J.M. and Johnson, D.R. (Eds). Springer, Drodorecht, pp29-45 Sharma, P., Das, A. and Mishra, M. 2023. Advances in micropropagation of pharmaceutically important fruit crops. In: Phytopharmaceuticals and biotechnology of herbal plants. Singh, S., Datta, R., Johri, P. and Trivedi, M. (Eds). CRC Press, USA,pp81-108 Sanchez, C. and Vidal, N. 2019. Use of bioreactor in propagation of forest trees. Eng. Life Sci.,896-915 Scheidt, G. N., da Silva, A. L. L., Dronk, A. G., Biasi, L. A. et al., 2009. Multiplicac ̧ ̃ao in vitro de Oncidium leucochilum (Orchidaceae)em diferentes sistemas de cultivo. Biociˆencias, 17, 82–85. Solórzano-Acosta, R. and Guerrero-Padilla, M. 2020. Design and Construction of a Pneumatic Temporary Immersion Bioreactor System for the Multiplication of Ananas comosus var. Trujillana Red. American J. Pl.Sci., 11, 1429-1442 Takayama, S. and Akita M. 1994. The types of bioreactors used for shoots and embryos. Plant Cell Tiss. Organ Cult. 39, 147–156. Tilkat, E., Süzerer, V., Ersali, Y., Hoșer, A., Kilinç, F.M., Tilkat, E.A., Akdemir, H., Özden Çiftçi, Y., Onay, A. and Kaplan, A. 2014. Mass shoot proliferation of Pistacia khinjuk stocks using temporary immersion bioreactor system. Acta Hortic., 1028, 145-151 Tisserat, B., Vandercook, C.E. (1985). Development of an automated plant culture system. Plant Cell Tiss Organ Cul., 5, 107–117. Uma, S., Karthik R., Kalpana, S., Backiyarani, S. and Sarswathi, M.S. 2021. A novel temporary immersion bioreactor system for large scale multiplication of banana (Rasthali AAB-Silk). Sci. Rep.11:20371 Vidal, N., Blanco, B. and Cuenca, B. 2015. A temporary immersion system for micropropagation of axillary shoots of hybrid chestnut. Plant Cell Tiss Organ Cult, 123, 229–243. Watt, M.P. 2012. The status of temporary immersion system technology for plant Micropropagation. African. J. Biotech., 11(76):14025-14035
References
Similar Articles
- Madhubala Thakre, Shant Lal, A.K. Goswami, Pratibha, Effect of various methods of crop regulation in guava under double-hedge row system of planting , Indian Journal of Horticulture: Vol. 70 No. 2 (2013): Indian Journal of Horticulture
- Rajnish Sharma, Parul Sharma, Assessing genetic variation using arbitrary oligonucleotide markers system in apple genotypes , Indian Journal of Horticulture: Vol. 76 No. 04 (2019): Indian Journal of Horticulture
- A.R. Malik, Jitendra S. Butola, Production potential of agri-horticulture system in temperate Himalaya: an experimental trial in North-Kashmir, India , Indian Journal of Horticulture: Vol. 67 No. Special Issue (2010): Indian Journal of Horticulture
- Karan Singh, N. Sharma, Effect of in-situ moisture conservation on morphology, physiology and production of olives under rainfed conditions , Indian Journal of Horticulture: Vol. 67 No. 04 (2010): Indian Journal of Horticulture
- B.K. Srivastava, M.P. Singh, Sobaran Singh, U.P. Shahi, Pankaj Srivastava, Shashi Lata, Evaluation of INM options on crop performance and soil fertility under tomato-green manure-brinjal cropping system , Indian Journal of Horticulture: Vol. 68 No. 01 (2011): Indian Journal of Horticulture
- Kundan Kishore, T. R. Rupa, H. S. Singh, Influence of grafting and rootstock on root traits, growth and cycloneinduced plant damage in sugar apple in eastern coastal region of India , Indian Journal of Horticulture: Vol. 77 No. 01 (2020): Indian Journal of Horticulture
- I. Sreelathakumary, L. Rajamony, Screening for shade tolerant genotypes of chilli for homestead cultivation , Indian Journal of Horticulture: Vol. 67 No. 01 (2010): Indian Journal of Horticulture
- M.S. Aneesa Rani, N. Kumar, R. Marimuthu, Evolving cashew F1 hybrids suitable for high density planting system , Indian Journal of Horticulture: Vol. 68 No. 02 (2011): Indian Journal of Horticulture
- P. Kharumnuid, Sujit Sarkar, Premlata Singh, Satya Priya, B.S. Tomar, Dhiraj K. Singh, N.K. Pandey, An assessment of contract farming system for potato seed production in Punjab – A case study , Indian Journal of Horticulture: Vol. 74 No. 03 (2017): Indian Journal of Horticulture
- Yamini Sharma, Harminder Singh, Anirudh Thakur, Effect of training system and in row spacing on yield and fruit quality of peach in the sub-tropical regions , Indian Journal of Horticulture: Vol. 74 No. 03 (2017): Indian Journal of Horticulture
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- T Damodaran, R.B Rai, D.K Sharma, V.K Misra, Prabhat Kumar, S.K Jha, Himanshu Dixit, R Kannan, Utilization of native microbial isolates for sodic soil as commercial bio-regulators to increase yield and vase-life of gladiolus , Indian Journal of Horticulture: Vol. 71 No. 02 (2014): Indian Journal of Horticulture