Application of novel sustainable bio-plastic materials in horticultural production

Published

2025-06-30

DOI:

https://doi.org/10.58993/ijh/2025.82.2.1

Keywords:

Bio-degradable, agricultural waste, micro-plastic, environmental compatibility, sustainability
Dimensions Badge

Authors

  • Sanjay K. Singh ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru 560089, Karnataka, India
  • Maruvarasi P. ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru 560089, Karnataka, India

Abstract

Bioplastics have emerged as a sustainable and safe alternative in the production of various horticultural crops, with applications ranging from nursery practices to packaging. Over the past two decades, increasing ecological awareness has driven significant advancements in the development and use of biodegradable polymers to address the issue of plastic waste. Biopolymers derived from renewable resources offer strong potential as eco-friendly substitutes for petroleum-based plastics. Research and practical applications have demonstrated the effective use of biodegradable plastics in horticulture, including mulching films, biodegradable pots, seed encapsulation, bioplastic granules for pest and disease management, and controlled-release systems for pesticides, fertilizers, and packaging materials. Notably, the first bioplastic was synthesized from a bacterium as early as 1926. However, despite their early discovery, synthetic polymers came to dominate due to their versatility and widespread industrial use, including in agriculture. The primary concern arises from their nonbiodegradable nature, leading to persistent environmental pollution and the growing problem of microplastics due to excessive use and inadequate recycling. In response, the past two decades has seen renewed efforts to synthesize bioplastics from agricultural products and bio-waste to mitigate the negative impacts of conventional plastics. This review highlights current research and development in bioplastics, their applications in agriculture and horticulture, and their influence on crop productivity, soil and plant health, and produce quality.

How to Cite

Sanjay K. Singh, & Maruvarasi P. (2025). Application of novel sustainable bio-plastic materials in horticultural production. Indian Journal of Horticulture, 82(02), 117–129. https://doi.org/10.58993/ijh/2025.82.2.1

Downloads

Download data is not yet available.

References

1. Accinelli, C., Mencarelli, M., Saccà, M.L., Vicari, A. and Abbas, H.K. 2011. Managing and monitoring of Aspergillus flavus in corn using bioplastic-based formulations. Bioresour. Technol. 56: 67-98.

2. Archer, E., Torretti, M. and Madbouly, S. 2023. Biodegradable polycaprolactone (PCL) based polymer and composites. Phys. Sci. Rev. 8(11): 4391-4414. https://doi.org/10.1515/ PSR-2020-0074

3. Avella, M., Di Pace, E., Immirzi, B., Impallomeni, G., Malinconico, M. and Santagata, G. 2007. Addition of glycerol plasticizer to seaweeds derived alginates: influence of microstructure on chemical-physical properties. Carbohydr. Polym. 69: 46-99.

4. Ayu, R.S., Khalina, A., Harmaen, A.S., Zaman, K., Mohd Nurrazi, N., Isma, T. and Lee, C.H. 2020. Effect of empty fruit brunch reinforcement in polybutylene-succinate/modified tapioca starch blend for agricultural mulch films. Sci. Rep. 10(1): 1166. https://doi.org/10.1038/ s41598-020- 58278-y

5. Barnes, D.K., Galgani, F., Thompson, R.C. and Barlaz, M. 2009. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. Royal Soc. Biol. Sci., 364(1526): 1985- 1998.

6. Bashan, Y. 1986. Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl. Environ. Microbiol. 51: 113-27.

7. Bilck, A.P., Grossmann, M.V. and Yamashita, F. 2010. Biodegradable mulch films for strawberry production. Poly. Test, 29(4): 471-476. https://doi. org/10.1016/j.polymertesting.2010.02.007

8. Chisti, Y. 2014. How renewable are the bioplastics? Biotech. Adv. 32: 1361.

9. Chung, H., Yang, J.E., Ha, J.Y., Chae, T.U., Shin, J.H., Gustavsson, M. and Lee, S.Y. 2015. Biobased production of monomers and polymers by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 36: 73-84.

10. Coolong, T. 2010. Performance of paper mulches using a mechanical plastic layer and water wheel transplanter for the production of summer squash. Hort Tech. 20: 319-24.

11. Coulter, J.W. 1934. Pineapple industry in Hawaii. Econ. Geog. 10: 288-96.

12. Dorner, J.W. 2004. Biological control of aflatoxin contamination of crops. Toxin Rev. 23: 425-50.

13. Freeman, O.W. 1929. Economic geography of the Hawaiian Islands. Econ. Geog. 5: 260-76.

14. Gadhave, R.V., Das, A., Mahanwar, P.A. and Gadekar, P.T. 2018. Starch based bioplastics: The future of sustainable packaging. Open J. Polymer Chem. 8(2): 21-23.

15. Garcia-Garcia, D., Carbonell-Verdu, A., Arrieta, M.P., L´ opez-Martínez, J. and Samper, M.D. 2020. Improvement of PLA film ductility by plasticization with epoxidized karanja oil. Polym. Degrad. Stab. 179: 109259. https://doi.org/10.1016/J. POLYMDEGRADSTAB.2020.109259

16. Hayes, D.G., Dharmalingam, S., Wadsworth, L.C., Leonas, K.K., Miles, C.A. and Inglis, D.A. 2012. Biodegradable agricultural mulches derived from biopolymers. In: Kishan, A.I., Khemani, C., Scholz, C. (Eds), Degradable polymers and materials, principles and practice. University of Alabama at Huntsville. ACS Books.

17. Herrera, R., Franco, L., Rodríguez-Galán, A. and Puiggalí, J. 2002. Characterization and degradation behavior of poly(butylene adipate-coterephthalate) s. J. Polymer Sci. Part A: Polymer Chem. 40: 4141–57. https://doi.org/10.1002/ pola.10501.

18. Hoque, M. and Janaswamy, S. 2023. Biodegradable packaging films from banana peel fiber. Sustain. Chem. Pharma. 37: 101400

19. Immirzi, B., Santagataa, G., Vox, G. and Schettini, E. 2009. Preparation characterisation and fieldtesting of a biodegradable sodium alginate-based spray mulch. Bio Syst. Engg. 102(4): 461-472.

20. Jandas, P.J., Mohanty, S. and Nayak, S.K. 2013. Sustainability, compostability, and specific microbial activity on agricultural mulch films prepared from poly(lactic acid). Ind. Engg. Chem. Res. 52: 17714-24.

21. Kale, G., Auras, R. and Singh, S.P. 2007. Comparison of the degradability of poly (lactide) packages in composting and ambient exposure conditions. Packag. Technol. Sci. 20: 49-70.

22. Kumar, Y., Shukla, P., Singh, P., Prabhakaran, P.P. and Tanwar, V.K. 2014. Bioplastics: A perfect tool for eco-friendly food packaging: A review. J. Food Product. Dev. Packag. 1: 01-06.

23. Leja, K. and Lewandowicz, G. 2010. Polymer biodegradation and biodegradable polymers- a review. Pol. J. Environ. Stud. 19: 255-66.

24. Marques, P.T., Lima, A.M.F., Bianco, G., Laurindo, J.B., Borsali, R., Meins, J.F. and Soldi, V. 2006. Thermal properties and stability of cassava starch films cross-linked with tetraethylene glycoldiacrylate. Polym. Degrad. 91: 726-32.

25. Martin-Closas, L. and Pelacho, A.M. 2011. Agronomic potential of biopolymer films. In: L. Martín-Closas and A.M. Pelacho (Eds.), Biopolymers – New materials for sustainable films and coatings, 277–99. https://doi.org/10.1002/9781119994312.ch13.

26. Martin-Closas, L., Costa, J. and Pelacho, A.M. 2017. Agronomic effects of biodegradable films on crop and field environment. In: M. Malinconico (Ed.), Soil degradable bioplastics for a sustainable modern agriculture. Green Chem. 128 Indian Journal of Horticulture, June 2025 Sust. Tech. 67–104, Heidelberg, Springer. https://doi.org/10.1007/978-3-662-54130-2_4.

27. Miller, D., Thetford, M., Verlinde, C., Campbell, G. and Smith, A. 2018. Dune restoration and enhancement for the Florida Panhandle. SGEB-76, Florida Sea Grant College Program, UF/IFAS Extension. edis.ifas.ufl.edu/pdffiles/SG/SG15600.pdf.

28. Monks, D.C., Monks, D.W., Basden, T., Selders, A., Poland, S. and Rayburn, E. 1997. Soil temperature, soil moisture, weed control and tomato (Lycopersicon esculentum) response to mulching. Weed Technol. 11: 561-66.

29. Mormile, P., Stahl, N. and Malinconico, M. 2017. The world of plasticulture. In: M. Malinconico (Ed.), Soil degradable bioplastics for a sustainable modern agriculture, pp 1-21. Berlin/Heidelberg: Springer. https://doi.org/10.1007/978-3-662-54130-2_1.

30. Nik-Yusuf, N.A.A., Rosly, E.S., Mohamed, M.,Abu Bakar, M.B., Mahani, Y., Sulaiman, M.A. and Ahmad, M.I. 2016. Waste banana peel and its potentialization in agricultural applications: Morphology overview. Mater. Sci. Forum 840:394-98. https://doi.org/10.4028/www.scientific. net/MSF.840.394.

31. Qian, Y., Qin, C., Zhang, J., Shi, B., Wei, Y., Wang, C., Niu, J., Kang, S., Chen, G. and Liu, Y. 2025. Sustainable, biodegradable, and recyclable bioplastics derived from renewable carboxymethyl cellulose and waste walnut shell. Int. J. Biol. Macromol., 140130.

32. Qiu, S., Zhou, Y., Waterhouse, G.I.N., Gong, R., Xie, J., Zhang, K. and Xu, J. 2021. Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films. Food Chem. 334: 127487. https://doi.org/10.1016/J.FOODCHEM.2020.127487

33. Rasheed, T., Vattathurvalappil, S.H., Shaukat, M.M., Theravalappil, R., Ali, U., Ummer, A.C., Saleem, M.T.B., Jaseer, E.A. and Imran, M. 2024. Recent updates on biodegradability and recyclability of bioplastics-Towards a new era in sustainability. Sustainable Material. Technol., p.e01051.

34. Rashidzadeh, A., Olad, A., Salari, D. and Jalil Hejazi, M. 2014. On the encapsulation of natural pesticide using polyvinyl alcohol/ alginate–montmorillonite nanocomposite for controlled release application. Polym. Engg. Sci. 54: 2707-14.

35. Riggi, E., Santagata, G. and Malinconico, M. 2011. Bio-based and biodegradable plastics for use in crop production. Recent Pat. Food Nutr. Agric. 3: 49-63.

36. Rudzinski, W.E., Chipuk, T., Dave, A.M., Kumbar, S.G. and Aminabhavi, T.M. 2003. pHsensitive acrylic-based copolymeric hydrogels for the controlled release of a pesticide and a micronutrient. J. Appl. Polym. Sci. 87: 394-403.

37. Sandak, A., Sandak, J. and Modzelewska, I. 2019. Manufacturing fit-for-purpose paper packaging containers with controlled biodegradation rate by optimizing addition of natural fillers. Cellulose. 26: 2673-88. https://doi.org/10.1007/s10570-018- 02235-6.

38. Santagata, G., Schettini, E., Vox, G., Immirzi, B., Scarascia Mugnozza, G. and Malinconico, M.2017. Biodegradable spray mulching and nursery pots: New frontiers for research. In: Malinconico, M. (Eds.) Soil Degradable Bioplastics for a Sustainable Modern Agriculture. Green Chem. Sustain. Technol., Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54130-2_5

39. Sarrocco, S., Raeta, R. and Vannacci, G. 2004. Seeds encapsulation in calcium alginate pellets. Seed Sci. Technol. 32: 649-61.

40. Shlush, E. and Davidovich-Pinhas, M. 2022. Bioplastics for food packaging. Trends Food Sci. Technol. 125: 66-80. https://doi.org/10.1016/j.tifs.2022.04.026

41. Smith, B.R., Deyton, D.E. and Sams, C.E. 2007-08. Biodegradable films as an alternative to plastic mulch in strawberry production progress report for SRSFC Project #2007-08. https://smallfruits.org/files/2019/07/ProgressReport_no2007 pdf

42. Teixeira, L.H., Weisser, W. and Ganade, G. 2016. Facilitation and sand burial affect plant survival during restoration of a tropical coastal sand dune degraded by tourist cars. Restor. Ecol. 24: 390–97. https://doi.org/10.1111/rec.12327.

43. Thompson, R.C., Moore, C.J., Vom Saal, F.S. and Swan, S.H. 2009. Plastics, the environment 129 Bio-plastic in Horticultural Production and human health: current consensus and future trends. Philos. Trans. Royal Soc. B. Biol. Sci. 364: 2153-66.

44. Tzika, M., Alexandridou, S. and Kiparissades, C. 2003. Powder Technol. 132:16-24.

45. Ueno, H., Shimura, M. and Yamauchi, M. 1999. Rice direct seeding method with recycled-paper mulching. Plant Prodn. Sci. 2: 53 ̶57.

46. Wang, L., Yu, G., Li, J., Feng, Y., Peng, Y., Zhao, X., Tang, Y. and Zhang, Q. 2019. Stretchable hydrophobic modified alginate double-network nano-composite hydrogels for sustained release of water-insoluble pesticides. J. Cleaner Prod. 226: 122-32.

47. Xanthos, D. and Walker, T.R. 2017. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and micro-beads): A review. Mar. Polln. Bull., 118: 17-26. https://doi.org/10.1016/j.marpolbul.2017.02.048.

48. Xu, Y.X., Kim, K.M., Hanna, M.A. and Nag, D. 2005. Chitosan-starch composite film: preparation and characterization. J. Ind. Crops Prod. 21: 185-92.

49. Yan, H., Chen, X., Feng, Y., Xiang, F., Li, J., Shi, Z., Wang, X. and Lin, Q. 2016. Modification montmorillonite by ball-milling method for immobilization and delivery of acetamiprid based alginate/ exfoliated montmorillonite nanocomposite. Polymer Bull. 73: 1185-1206.

50. Yang, J., Ching, Y.C., Chuah, C.H., Hai, N.D., Singh, R. and Nor, A.R.M. 2021. Preparation and characterization of starch-based bioplastic composites with treated oil palm empty fruit bunch fibers and citric acid. Cellulose, 28: 4191-4210.

51. Zhang, C., Wang, C., Cao, G., Wang, D. and Ho, S.H. 2020. Sustainable solution to plastics pollution: an eco-friendly bioplastic film production from high-salt contained Spirulina sp. residues. J. Hazard Material. 388: 121773.

52. Zhang, S., Cheng, X., Yang, W., Fu, Q., Su, F., Wu, P., Li, Y., Wang, F., Li, H. and Ai, S. 2024. Converting fruit peels into biodegradable, recyclable and antimicrobial eco-friendly bioplastics for perishable fruit preservation. Bioresour. Technol. 406: 131074.

53. Zhang, S., Fu, Q., Li, H., Wu, P., Waterhouse, G.I., Li, Y. and Ai, S. 2023. A pectocellulosic bioplastic from fruit processing waste: robust, biodegradable, and recyclable. Chem. Eng. J. 463: 42452.

54. Zhang, C.Y. and Nakatani, J. 2024. Implications of chemical recycling of plastic waste for climate change impacts: A critical review. Sustain. Prod. Consum.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.