Response of some wild species of tomato against Peanut bud necrosis virus under open-field conditions
Downloads
Published
Keywords:
Solanum lycopersicum, S. peruvianum, peanut bud necrosis virus.Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Thrips-borne Tospovirus pathogens adversely affect many globally important crops. Among 16 distinct virus species in the Tospovirus genus, four species including Peanut bud necrosis virus (PBNV) causing necrosis disease in tomato have been reported in India. Identification of stable sources and further utilization of wild relatives as gene sources to increase levels and diversify the bases of resistance may offer good management for the disease. A total of 13 wild species of tomato (Solanum peruvianum), two S. pimpinellifolium, one S. chilense, one S. pennellii and three check cultivars (S. lycopersicum) along with two cultivars (S. lycopersicum) having the Sw-5 and Sw-7 genes were evaluated under field conditions during three consecutive seasons (June to October 2008, July to December 2009, August 2010 to February 2011). Among all, a high degree of field resistance (>80%) was detected in seven lines of S. peruvianum (L00735, L00671, L00887, L06138), S. chilense (TL02226) and S. pimpinellifolium (L03708, TL02213) lines. The field data was also supported by negative reaction against a polyclonal antiserum of the nucleocapsid protein (N) of PBNV in direct antigen coating-enzyme linked immunosorbent assay (DAC-ELISA). The cultivars with Sw-5 and Sw-7 genes were highly susceptible to PBNV.Abstract
How to Cite
Downloads
Anonymous, 2010. Package of practices of the important horticultural crops of Andhra Pradesh. YSR Hortl. Univ., West Godavari district. Akram, M., Jain, R.K., Vikas Chaudhary, Ahlawat, Y.S., and Khurana, S.M.P. 2004. Comparison of groundnut bud necrosis virus isolates based on movement protein (NSm) gene sequences. Ann. Appl. Biol. 145: 285-89. Campbell, C.L. and Madden, L.V. 1990. Introduction to Plant Disease Epidemiology, John Wiley and Sons, New York, 532 p. Cho, J.J., Mau, R.F.L., Hamasaki, R.T. and Gonsalves, D. 1988. Detection of Tomato spotted wilt virus in individual thrips by enzymelinked immunosorbent assay. Phyotopath. 78: -52. de Avila, A.C., de Hann, P., Kormelink, R., Resende, R.deo., Kitajima, E.W., Goldbach R.E. and Peters, J.R. 1993. Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. J. General Virol. : 153-59. Gordillo, L.F., Stevens, M.R., Millard, M.A. and Geary, B. 2008. Screening two Lycopersicon peruvianum collections for resistance to Tomato spotted wilt virus. Pl. Dis. 92: 694-04. Greenough, D.R., Black, L.L. and Bond, W.P. Aluminum-surfaced mulch: an approach to control of Tomato spotted wilt virus in solanaceous crops. Pl. Dis. 74: 805-08. Jain, R.K., Umamaheswaran, K., Bhat, A.I., Thien, H.X. and Ahlawat, Y.S. 2002. Necrosis disease on cowpea, mungbean and tomato is caused by groundnut bud necrosis virus. Indian Phytopath. 55: 354 Krishna Kumar, N.K., Ullman, N.K. and Cho, J.J. Evaluation of Lycoperscion germplasm for tomato spotted wilt tospovirus resistance by mechanical and thrips transmission. Pl. Dis. 77: -41 Krishna-Kumar N.K., Ullman, D.E. and Cho, J.J. Resistance among Lycopersicon species to Frankliniella occidentalis (Thysanoptera: Thripidae). J. Ecol. Entomol. 88: 1057-65. Paterson, R.G., Scott, S.J. and Gergerich, R.C. Resistance in two Lycopersicon species to an Arkansas isolate of Tomato spotted wilt virus. Euphytica, 43: 173-78 Qui, W.P. and Moyer, J.W. 1999. Tomato spotted wilt tospovirus adapts to TSWV N gene-derived resistance by genome reassortment. Phytopath. : 575-82 Rosello, S., Diez, M.J., Lacasa, A., Jorda, C. and Nuez, F. 1997. Testing resistance to TSWV introgressed from Lycopersicon peruvianum by artificial transmission techniques. Euphytica, 98: -98. Sain, S.K. and Chadha, M.L. 2007. Major viral diseases incidence on important vegetable crops in Hyderabad. In: 10th International Plant Virus Epidemiology Symposium’ Controlling Epidemics of Emerging and Established Plant Virus Diseases-The Way Forward, 15-19 Oct , ICRISAT, Patancheru, India, p. 114. Singh, B.R. and Tripathi, D.P. 1991. Loss due to leaf curl and spotted wilt diseases of tomato. Madras Agric. J. 78: 34-36 Snedecor, G.W. and Cochran, W.G. 1980. Statistical Methods (7th edn.), The Iowa University Press, Ames, Iowa, USA, 507 p. Stevens, M.R., Scott, S.J. and Gergerich, R.C. Evaluation of seven Lycopersicon species for resistance to Tomato spotted wilt virus (TSWV). Euphytica, 80: 79-84. Swift, C.E. 2006. Fact sheet on Tomato spotted wilt virus. Tri river area, Colorado State University Cooperative Extension.2775 US Hwy 50. http:// www.ext.colostate.edu. Soler, S., Cebolla-Cornejo, J. and Nuze, F. 2003. Control of diseases induced by tospoviruses in tomato: an update of the genetic approach. Phytopath. Mediterr. 42: 207-19. Zaccardelli, M., Perrone, D., Galdo, A. Del., Campanile, F., Parrella, G. and Giordano, I. Tomato genotypes resistant to Tomato spotted wilt virus evaluated in open field crops in Southern Italy. Acta Hort. 789: 147-49.
References
Similar Articles
- Mamta Bohra, Akash Rana, Parul Punetha, Sandeep Upadhyay, B.P. Nautiyal, Effect of organic manures and biofertilizers on growth and floral attributes of Kamini China aster , Indian Journal of Horticulture: Vol. 76 No. 02 (2019): Indian Journal of Horticulture
- Jagesh K. Tiwari, Rasna Zinta, Vinod Kumar, Devendra Kumar, Tanuja Buckseth, RK Singh, Shashi Rawat, SK Chakrabarti, Development of molecular marker for nitrate reductase (NR) gene to improve nitrogen use efficiency in potato , Indian Journal of Horticulture: Vol. 76 No. 01 (2019): Indian Journal of Horticulture
- K. Singh, O.P. Awasthi, A. K. Dubey, V. K. Sharma, S. Kumar, Theivanai, M., Effect of ionizing radiation on morphological characters and leaf nutrient content of sweet orange cv. Mosambi , Indian Journal of Horticulture: Vol. 79 No. 1 (2022): Indian Journal of Horticulture
- P. Bhattarai, R.A. Kaushik, K.D. Ameta, H.K. Jain, M.K. Kaushik, F.L. Sharma, Effect of plant geometry and fertigation on growth and yield of cherry tomato (Solanum lycopersicon var. cerasiforme) under zero energy polyhouse conditions , Indian Journal of Horticulture: Vol. 72 No. 02 (2015): Indian Journal of Horticulture
- K. Umesha, S.P. Soumya, G.R. Smitha, B.S. Sreeramu, Influence of organic manures on growth, yield and quality of makoi (Solanum nigrum L.) , Indian Journal of Horticulture: Vol. 68 No. 02 (2011): Indian Journal of Horticulture
- Tithi Dutta, Swadesh Banerjee, Tridip Bhattacharjee, Praveen Kumar Maurya, Subhramalya Dutta, Arup Chattopadhyay, Pranab Hazra, Heterosis breeding for improving quality traits in brinjal for export in the tropics , Indian Journal of Horticulture: Vol. 76 No. 03 (2019): Indian Journal of Horticulture
- Sanjay Singh, A.K. Singh, Standardization of softwood grafting in chironji (Buchanania lanzan Spreng.) under semi-arid environment of western India , Indian Journal of Horticulture: Vol. 71 No. 01 (2014): Indian Journal of Horticulture
- Anita Singh, Major Singh, B.D. Singh, Comparative in vitro shoot organogenesis and plantlet regeneration in tomato genotypes , Indian Journal of Horticulture: Vol. 67 No. 01 (2010): Indian Journal of Horticulture
- Amandeep Kaur, Nirmaljit Kaur, Geeta Bassi, Navraj Kaur, A. S. Dhatt, Morphogical and molecular markers based assessment of genetic diversity in eggplant , Indian Journal of Horticulture: Vol. 77 No. 01 (2020): Indian Journal of Horticulture
- Manisha Mangal, Morphological characterization of floral traits to predict ideal stage for haploid production in bell pepper , Indian Journal of Horticulture: Vol. 78 No. 4 (2021): Indian Journal of Horticulture
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.
