Determination of maturity indices of fennel (Foeniculum vulgare Mill.) for chewing purposes

Published

2025-06-30

DOI:

https://doi.org/10.58993/ijh/2025.82.2.12

Keywords:

Harvesting stage , antioxidants, sensory, chromatic, essential oil
Dimensions Badge

Authors

  • Shiv Lal ICAR-National Research Centre on Seed Spices, Ajmer 305206, Rajasthan, India
  • Gopal Lal Cauvery Water Management Authority, New Delhi-110 066, India
  • S N Saxena ICAR-Indian Institute of Millets Research, Regional Research Station on Pearl millet, Gudamalani, Rajasthan, India
  • M K Mahatma ICAR-National Research Centre on Seed Spices, Ajmer 305206, Rajasthan, India
  • C K Jangid ICAR-National Research Centre on Seed Spices, Ajmer 305206, Rajasthan, India
  • Monika Chaudhary ICAR-National Research Centre on Seed Spices, Ajmer 305206, Rajasthan, India

Abstract

Umbels were harvested at six different stages of maturation to determine maturity indices of fennel for chewing. Seeds harvested 35 and 40 days after anthesis had the highest overall sensory acceptability score (8.53 and 8.40) for chewing (raw seeds). Sensory analysis of fennel seeds harvested at various stages revealed that those harvested 35-40 days after anthesis (DAA) possess high quality from the consumer’s perspective due to their superior appearance, flavour, texture, and taste. While delayed harvesting led to increased yield and higher concentrations of bioactive compounds such as phenols and antioxidants, but negatively impacted sensory attributes. Seed colour characteristics, including lightness, hue, and chroma, varied significantly across harvest stages, with optimal values observed at 35-40 DAA. Additionally, moisture content and total soluble solids decreased with maturity, while crude fibre content increased, potentially affecting consumer acceptability. Although higher yields (1190, 1422.6, 1435.48 kg ha-1) and bioactive compounds were recorded at later harvest stages, the overall sensory appeal and balanced nutritional composition of seeds harvested at 35-40 DAA make them the optimal choice for chewing. These findings emphasize the importance of harvesting fennel seeds at optimum stage to meet specific market demands while maximizing sensory quality and nutritional value.

How to Cite

Shiv Lal, Gopal Lal, S N Saxena, M K Mahatma, C K Jangid, & Monika Chaudhary. (2025). Determination of maturity indices of fennel (Foeniculum vulgare Mill.) for chewing purposes. Indian Journal of Horticulture, 82(02), 200–208. https://doi.org/10.58993/ijh/2025.82.2.12

Downloads

Download data is not yet available.

References

1. Abdossi, V., Ghahremani, A., Hadipanah, A., Ardalani, H. and Aghaee, K. 2015. Quantitative and qualitative responses in chemical composition of three ecotypes of fennel (Foeniculum vulgare Mill.) cultivated in Iran climatic conditions. J. Biodiv. Environ. Sci. 6: 401–07.

2. Ahmed, A.F., Shi, M., Liu, C. and Kang, W. 2019. Comparative analysis of antioxidant activities of essential oils and extracts of fennel (Foeniculum vulgare Mill.) seeds from Egypt and China. Food Sci. Hum. Wellness., 8: 67–72.

3. Alcántar, G.G. and Sandoval, V.M. 1999. Manual De Análisisquímico De Tejido Vegetal. Publicación Especial 10. Sociedad Mexicana De La Ciencia Del Suelo. A.C. Chapingo, México, Pp. 156.

4. Anwar, F., Hussain, A.I., Sherazi, S.T. H. and Bhanger. M.I. 2009. Changes in composition and antioxidant and antimicrobial activities of essential oil of fennel (Foeniculum vulgare Mill.) fruit at different stages of maturity. J. Herbs, Spices & Med. Plants, 15: 187–202.

5. AOAC. 1994. Official Methods of Analysis, 16th Edn. Association of Official Analytical Chemists, Arlington, Virginia, USA.

6. Brahmi, F., Mebrek, S., Hani, K. and Madani, K. 2021. Influence of harvest time on the yield and chemical composition of fennel (Foeniculum vulgare) essential oil. J. Essent. Oil Bearing Plants,, 24(1): 42-53.

7. Clevenger, J.F. 1928. Apparatus for the determination of volatile oil. J Am Pharm Assoc. 17(4): 345-9.

8. Dawodu, O., Abibu, M., Ajayi, J. and Elias, T. 2023. Production and sensory evaluation of mixed spices from selected local spices retailed in ede, Nigeria. Int. J. Food Sci. 9: 4404492.

9. El-Gamal, S.M.A. and Ahmed, H.M.I. 2017. Influence of different maturity stages on fruit yield and essential oil content of some Apiaceae family plants B: Fennel (Foeniculum Vulgare Mill.). J. Plant Prod. (Mansoura Univ.), 8: 127–33.

10. Kapoor, R. and Aslam, M. 2022. Post-harvest quality management of fennel (Foeniculum vulgare): An overview of technological advancements. J. post harvest technol. 10(1): 77-88.

11. Manohar, R., Ganesh, A., Abbyramy, N., Abinaya, R., Balaji, S.K. and Priya, S.B. 2020. The effect of fennel seeds on Ph of saliva – A clinical study. Indian J. Dent. Res. 31: 921-3.

12. Manzoor, M.F., Hussain, A., Naumovski, N., Ranjha, M.M.A.N., Ahmad, N., Karrar, E., Xu, B. and Ibrahim, S.A.A. 2022. Narrative review of recent advances in rapid assessment of anthocyanins in agricultural and food products. Front. Nutr. 9: 901342.

13. Moosavi, S.G. 2014. Fennel morphological traits and yield as affected by sowing date and plant density. Adv. Agricult. Biol., 2: 45-9.

14. Noreen, S., Tufail, T., Bader Ul Ain, H., Ali, A., Aadil, R. M., Nemat, A. and Manzoor, M.F. 2023. Antioxidant activity and phytochemical analysis of fennel seeds and flaxseed. Food Science & Nutrition, 11: 1309–17.

15. Özel, A., Koşar, İ., Demirbilek, T. and Erden, K. 2019. Changes in yields and volatile oil composition of fennel (Foeniculum vulgare Mill.) in high plant populations. Italian Journal of Agronomy, 14: 1347-52.

16. Peyvast, G.; Sedaghathoor, S. and Pessarakli, M. 2010. Effect of different harvesting times on fennel (Foeniculum vulgare Mill.) essential oil content and composition. J. Food Agric. Environ. 8(2): 265-8.

17. Ratna M., Sarker, R., Ali, M.J., Ara, R., Rahman, M.M. and Kamrozzaman, M.M. 2019. Effect of harvesting time for quality seed yield of fennel. Am. Educ. Res. J. 2(7): 104-10.

18. Ravid, U., Putievsky, E. and Snir, N. 1983. The volatile components of oleoresins and the essential oils of Foeniculum vulgare in Israel. J. Nat. Prod. 46: 848–51.

19. Stanojevi´C, L.J., Marjanovi´C-Balaban, Z., Kalaba, V., Stanojevi´C, J., Cvetkovi´C, D. and Caki´C, M. 2017. Chemical composition, antioxidant and antimicrobial activity of basil (Ocimum basilicum L.) essential oil. J. Essent. Oil Bearing Plants, 20: 1557–69.

Similar Articles

<< < 24 25 26 27 28 29 30 31 > >> 

You may also start an advanced similarity search for this article.