New paradigm shifts in micropropagation of fruit crops through bioreactors - a review





Bioreactor, temporary immersion system (TIS), continuous immersion system (CIS), RITA
Dimensions Badge


  • Maneesh Mishra ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, Lucknow 226101, Uttar Pradesh, India
  • Shailendra Rajan ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, Lucknow 226101, Uttar Pradesh, India
  • T Damodaran ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, Lucknow 226101, Uttar Pradesh, India


within relatively shorter periods, as well as significant reductions in hyperhydricity in plants as a result of efficient gas exchange, oxygen supplementation and automation, bioreactors, specifically temporary immersion systems (TIS), are being utilized for mass multiplication of forestry and horticultural crops. In tissue culture of banana, date palm, strawberrys, papaya, citrus, grape, pineapple, apple, pear, plum, chestnut, pistachio nut, apricot, sweet cherry, and almond, a variety of TIS bioreactors were used, including RITA, Plantform, SETIS and twin glass airlifts. TIS Bioreactors need to be improved in terms of space utilization. The space utilization was found to be highest with the Plantform system (80%) and lowest in the Twin Flask system (26%). Higher head space provides better plant growth and lesser fogging on the walls of the bioreactor. Most bioreactors have not been designed to facilitate better root production in vitro. Roots get coiled and cluttered, which needs improvement in design. The provision of illumination in each tank will facilitate better morphogenesis. This paper describes the micropropagation of fruit crops using different TIS bioreactors.

How to Cite

Mishra, M., Rajan, S., & Damodaran, T. (2024). New paradigm shifts in micropropagation of fruit crops through bioreactors - a review. Indian Journal of Horticulture, 81(01), 1–10.


Download data is not yet available.

Author Biographies

Shailendra Rajan, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, Lucknow 226101, Uttar Pradesh, India

Dr. Rajan is an acclaimed researcher and specializes in genetic resource management of horticultural crops particularly mango and guava.

T Damodaran, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, Lucknow 226101, Uttar Pradesh, India

Dr. T. Damodaran has vast experience in the filed of host plant interaction. He developed ICAR Fusicont Technolofy for management of FOc wilt of banana caused by TR-4 which was commercialized globally. He developed, patented and commercialized In vitro Bio Immunization technology for banana for production of wilt tolerant plants.


Abahmane, L. 2020. A comparative study between temporary immersion and semi solid cultures on shoot multiplication and plantlets production of two Moroccan date palm (Phoenix dactylifera) varieties in vitro. Notulac Scientia Biologiac, 12 (2):277-288

Abdulmalik, M.M., Usman, I.S., Nasir, A.U. and Sani, L.A. 2019. Micropropagation of banana (Musa spp) using temporary immersion system, BAJOPAS, 12 (2) :197-200

Akademir, H., Syzeres, V., Onay, A., Tilkat, E., Ersali, Y. and Cliffci, Y.O. 2014. Micropropagation of pistachio and its rootstocks by temporary immersion system. Pl. Cell. Tiss. Org. Cult., 117: 65-76

Adelberg, J. and Simpson, E.P. 2002. Intermittent Immersion Vessel Apparatus and Process for Plant Propagation. US patent pending, Publ. US2002/0155595 A1

Alkyhari, J.M. and Naik, P.M. 2017. Date palm micropropagation. Advances and Application. Ciencia e Agrotech, 41(4): 347-358

Aitken-Christie, J. and Davies, H. E. 1988. Development of a semi-automated micropropagation system. Acta Hortic. 230, 81–88.

Ayenew, B. 2013. Efficient use of temporary immersion bioreactor on pine apple multiplication and rooting abiliyu. J. Microb. Biotech. & Food Sci., 2(4): 2456-2465

Alkhateeb, A.A. and Alturki, S.M. 2014. A comparision of liquid and semi solid culture on shoot proliferation and rooting of three date palm cultivars (Phonenix dactylifera L.) in vitro. Advances Environ. & Biol., 89(6):263-269

Almusawi, A.H.A., Sayegh, A.J., Alshanaw, A.M.S. and Griffis, J.L. Jr. 2017. Plantform bioreactor for mass micropropagation of date palm. Methods Mol Biol.,1637:251-265

Arruda, A.L., Nerbass, F.R., Kretzschmar, A.A., Rufato, L., Posser, A.J., Fagherazzi, M.M., Silva, P.S. and Welter, J.F. 2021. Use of temporary immersion bioreactors and solid culture medium in the in vitro propagation of pear rootstocks. Acta Hortic. 1303, 113-120

Bello-Bello, J.J., Cruz-Cruz, C.A. & Pérez-Guerra, J.C. 2019. A new temporary immersion system for commercial micropropagation of banana (Musa AAA cv. Grand Naine). In Vitro Cell.Dev. Biol.-Plant, 55, 313–320.

Boxus, P. 1992. Mass propagation of strawberry and new alternatives for some fruit crops. In: Transplant Production System. Kurater, K and Kozai, T. (Eds) Kluwer: Dordrecht, pp151-102

Ayenew, B., Tadesse, T., Gebremariam, E., Mengesha, A., and Tefera, W. 2013. Efficient use of temporary immersion bioreactor on pine apple (Ananas comosus L.) multiplication and rooting ability . J. Microbiol. Biotech & Food Sci., 2 (4) :2456-2465

Cabasson, C., Alvard, D. and Dambier, D. 1997. Improvement of Citrus somatic embryo development by temporary immersion. Plant Cell, Tissue and Organ Culture, 50, 33–37 (1997).

Cronauer, S.S. and Krikorian, A.D. 1984. Multiplication of Musa from excised stem tips. Annals Bot, 53:321-328

Chakrabarty, S., Hahn, E.J., Yoon, Y.J. and Paek, K.Y. 2003. Micropropagation of apple rootstock M9 EMLA using bioreactor. J. Hort. Sci. Biotech., 78(6):605-609

Carlo, A.D., Tarraf, W., Lambardi, M. and Benelli, C. 2021. Temporary immersion system for production of biomass and bioactive compounds from medicinal plants. Agron, 11:2414

Carlos, A. 2012. The potential of TIS in meeting crop production demand in Nigeria. J. Biol. & Life Sci. 3(1):66-86

Corona, J., Pastelín, M., Castañeda, O., Solano, L. and Hernadez, K. 2019. Micropropagation of ‘MSXJ’ hybrid of papaya in temporary immersion systems. Acta Hort., 1250, 19

Damodaran, T., Gopal, S., Yadav, A., Shukla, P.K., Muthukumar, M., Kumari, N., Ahmad, I., Jha, S., & Deepak, N. 2019. Successful community-based management of banana wilt caused by Fusarium oxysporum f.sp. cubense Tropical race-4 through ICAR-FUSICONT. J Appl Hort, 21(1):33-47

Damodaran, T., Mishra, M., Muthukumar, M., Rajan, S., Yadav, K., Kumar, A., Debnath, P., Kumari, S., Bora, P., Gopal, R. and Kumar, S. 2023. Secondary metabolite induced tolerance to Fusarium oxysporum f.sp. cubense TR4 in banana cv. Grand Naine through in vitro bio-immunization: a prospective research translation from induction to field tolerance. Front. Microbiol. 14:1233469

Debnath, S., Bioreactors and molecular analysis in berry crop micropropagation—a review. Can. J. Plant Sci. 2011, 91, 147–157

Escalona, M., Lorenzo, J. and González, B (1999). Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep, 18, 743–748

Ebrahimi, M., Habashi, A.A. and Emadpour, M. 2022. Recovery of virus-free Almond (Prunus dulcis) cultivars by somatic embryogenesis from meristem undergone thermotherapy. Sci. Rep, 12, 14948

Farahani, F. and Majd, A. 2012. Comparision of liquid culture media and effect of TIB on growth and multiplication of banana (Musa cv. Dwarf Cavendish). Af. J. Biotech., 11 (33): 8302-8308

Fitch, M.M.M. and Manshardt, R.M. 1990. Somatic embryogenesis and plant regeneration from immature zygotic embryos of papaya (Carica papaya L.). Plant Cell Rep, 9, 320–324

Fki, L., Bouaziz, N., Kriaa, W., Benjema-Masmoudi, R., Gorgouri-Bouzid, R., Rival, A. and Dirra, N. 2011. Multiple bud culture of Barhee date palm and physiological status of date palm. J. Pl. Physiol., 168(14): 1694-1700

Georgiev, V., Schumann, A., Pavlov, A. and Bley, T. 2014. Temporary immersion system in plant biotechnology. Eng. Life Sci., 14:607-621

Georgieva, L.I., Tsvetko, M., Geogieva and Kondakova, V. 2016. New protocol for in vitro propagation of berry plants by its bioreactor. Bulg. J. Agril. Sci., 22(5):745-751

Godoy, S., Tapia, E., Seit, P. and Andrade, D. Sanchez, E., Andrade, P., Almeida, A.M. and Prieto, H. 2017. Temporary immersion system for mass propagation of sweet cherry cultivars and cherry rootstocks: development of a micropropagation procedure and effect of culture condition on plant quality. In vitro Cell. Dev. Biol- Plant, 53(5): 494–504

Gomez, R., Garcia, J., Mendoza, J., Pina, F., Santos-Ordonez, E., Armas, M. and Flores, J. 2020. Establishment of papaya (Carica papaya L.) micropropagation protocol in a temporary twin vessel immersion system. Pl. Cell Biotech. Mol. Biol., 21(13-14), 1-6.

González-Olmedo, J.L., Fundora, Z.,. Molina, L.A., Abdulnour, J., Desjardins, Y. and Escalona, M. 2005. New Contributions to Propagation of Pineapple (Ananas comosus L. Merr) in Temporary Immersion Bioreactors In Vitro . Cel. & Devel. Biol. Plant, 41 ( 1): 87-90

Hanhineva, K., Kokko, H. and Kärenlampi, S. 2005. Shoot regeneration from leaf explants of five strawberry (Fragaria × Ananassa) cultivars in temporary immersion bioreactor system. In Vitro Cell.Dev.Biol.-Plant 41, 826–831 (2005).

Hawang, H.D., Kwon, S.H., Murthy, H.N., Yun, S.W., Pyo, S.S. and Park, S.Y. 2022. Temporary immersion bioreactor system as an efficient method for mass production of in vitro plants in horticulture and medicinal plants. Agron, 12, 346

Kana, E.B.G., Oloke, J.K., Lateef, A., Azhafack, R.H. and Adeyemii, A. 2010. Implementation details of computerized temporary immersion bioreactor: A fermentation case of Pleurotus pulmonarius. Biotechnolo. & Biotechnol. Eq. 24: 2114-2153

Khafri, A.Z., Solouki, M., Zarghami, R. and Fakhri, B.A. 2020. In vitro propagation of three Iranian apricot cultivars. In Vitro Cellular Develop. Pl., 57 (1):1-16

Kim, N.Y., Hwang, H.D., Kim, J.H. 2020. Efficient production of virus-free apple plantlets using the temporary immersion bioreactor system. Hortic. Environ. Biotechnol, 61, 779–785 (2020).

Kryukov, L.A., Vodolazhsky, D.I., Kamenetsky-Goldstein, R. 2022. Micropropagation of grapevine and strawberry from south Russia: rapid production and genetic uniformity. Agron.,12 (308):3-10

Litz, R.E. & Conover, R.A. 1978 Tissue culture propagation of Papaya. Proc. Fla. State Hort. Soc. 90, 245-246.

Madhulatha, P., Anbalagan, M., Jayachandran, S. et al. 2004. Influence of Liquid Pulse Treatment with Growth Regulators on in vitro Propagation of Banana (Musa spp. AAA). Plant Cell, Tiss.Organ Cul., 76, 189–192

Mirzabe, A.M., Hajiahmad, A., Fadavi, A. and Rafiee, S. 2022. Temporary immersion systems (TISs): A comprehensive review, J. Biotech., 357: 56-83,

Mishra, M., Shukla, N. and Chandra R. 2007. Micropropagation of papaya (Carica papaya L.) In: Protocols for Micropropagation of woody trees and fruits. Jain, S.M. and Hggman, H. (Eds).Springer, pp 4437-441

Mishra, M., Pati, R. and Chandra, R.2006. Clonal micropropagation of Indian gooseberry (Emblica officinalis Gaertn). Ind. J. Genet, Plant Breed, 66(4):359-360

Mishra, M., R. Chandra and Pati,R. 2008. In vitro regeneration of Aegle marmelos Corr. And genetic fidelity testing of micropropagated plants through molecular markers. Ind.J.Hort, 65 (1) 6-11

Mishra, M. Shree, Y., Pati, R., Seal,S., Shukla,N.,Kamle,M., Chandra, R. and Srivastava,A. 2010. Micropropagation of Mangifera indica L. cv. Kurukkan through somatic embryogenesis. Ind. J. Genet, 70(1):1-6

Nagori, R. and Purohit, S.D. 2004. In vitro plantlet t regeneration in Annona squa-mosa through direct shoot bud differentiation on hypocotyl segments. Scientia Hort., 99 , 89-98

Othmani, A., Bayoudh, C., Sellemi, A. and Dria, N. 2017. Temporary immersion system for date palm Micropropagation. Methods mol. Biol., 1637:239-249

Perez, R. M., and P. C. Debergh. 1999. Temporary immersion: an alternative culture system for Citrus embryogenic cell cultures." Mededelingen-Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent (Belgium)

Posada-Pérez, L., Montesinos, Y.P., Guerra, D.G. 2017. Complete germination of papaya (Carica papaya L. cv. `Maradol Roja´) somatic embryos using temporary immersion system type RITA® and phloroglucinol in semi-solid culture medium. In Vitro Cell.Dev.Biol.-Plant , 53, 505–513.

Rajmohan, K. 2011. Date palm tissue culture. A pathway to rural development. In: Date Palm Biotechnology. Jain, S.M., Alkhayri, J.M. and Johnson, D.R. (Eds). Springer, Drodorecht, pp29-45

Sharma, P., Das, A. and Mishra, M. 2023. Advances in micropropagation of pharmaceutically important fruit crops. In: Phytopharmaceuticals and biotechnology of herbal plants. Singh, S., Datta, R., Johri, P. and Trivedi, M. (Eds). CRC Press, USA,pp81-108

Sanchez, C. and Vidal, N. 2019. Use of bioreactor in propagation of forest trees. Eng. Life Sci.,896-915

Scheidt, G. N., da Silva, A. L. L., Dronk, A. G., Biasi, L. A. et al., 2009. Multiplicac ̧ ̃ao in vitro de Oncidium leucochilum (Orchidaceae)em diferentes sistemas de cultivo. Biociˆencias, 17, 82–85.

Solórzano-Acosta, R. and Guerrero-Padilla, M. 2020. Design and Construction of a Pneumatic Temporary Immersion Bioreactor System for the Multiplication of Ananas comosus var. Trujillana Red. American J. Pl.Sci., 11, 1429-1442

Takayama, S. and Akita M. 1994. The types of bioreactors used for shoots and embryos. Plant Cell Tiss. Organ Cult. 39, 147–156.

Tilkat, E., Süzerer, V., Ersali, Y., Hoșer, A., Kilinç, F.M., Tilkat, E.A., Akdemir, H., Özden Çiftçi, Y., Onay, A. and Kaplan, A. 2014. Mass shoot proliferation of Pistacia khinjuk stocks using temporary immersion bioreactor system. Acta Hortic., 1028, 145-151

Tisserat, B., Vandercook, C.E. (1985). Development of an automated plant culture system. Plant Cell Tiss Organ Cul., 5, 107–117.

Uma, S., Karthik R., Kalpana, S., Backiyarani, S. and Sarswathi, M.S. 2021. A novel temporary immersion bioreactor system for large scale multiplication of banana (Rasthali AAB-Silk). Sci. Rep.11:20371

Vidal, N., Blanco, B. and Cuenca, B. 2015. A temporary immersion system for micropropagation of axillary shoots of hybrid chestnut. Plant Cell Tiss Organ Cult, 123, 229–243.

Watt, M.P. 2012. The status of temporary immersion system technology for plant Micropropagation. African. J. Biotech., 11(76):14025-14035