Development of sex-linked PCR markers for gender identification in papaya

Published

2024-03-30

DOI:

https://doi.org/10.58993/ijh/2024.81.1.17
Dimensions Badge

Authors

  • Chaithra T.S Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • Kanhaiya Singh Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • Jai Prakash Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • S.K. Singh Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • Zakir Hussain Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • N.C. Gupta Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • R.R. Kumar Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India

Abstract

Papaya is an important fruit crop in the tropical and subtropical regions of the world, having several nutritional and numerous medicinal properties. It is a polygamous plant that has three primary sex forms, viz., male, female and hermaphrodite. Several methods are employed, based on morphological, physiological, and cytological factors, to detect the sex of plants at an early stage of growth. However, none of them proved effective, which led to the development of highly effective gene-based markers. In the present study, attempts were made to validate the molecular markers to determine the sex during the early stage of the plant. Out of the ten selected RAPD-SCAR markers, five SCAR markers showed amplification. Among the amplified markers, SDP, PKBT 5, and PMSM 2 proved most effective for identifying sex at the early developmental stage. These markers can be used commercially to select desired seedlings at an early stage for plantation

How to Cite

T.S, C., Singh, K., Prakash, J., Singh, S., Hussain, Z., Gupta, N., & Kumar, R. (2024). Development of sex-linked PCR markers for gender identification in papaya. Indian Journal of Horticulture, 81(01), 104–109. https://doi.org/10.58993/ijh/2024.81.1.17

Downloads

Download data is not yet available.

References

Atak, A., Aydin, B. and Abdurrahim, K. K. 2012. Sex determination of kiwi fruit seedlings with molecular markers. In: II International Symposium on Biotechnology of Fruit Species, 1048: 197-203.

Datta, P. C. 1971. Chromosomal biotypes of Carica papaya Linn. Cytologia, 36 (4): 555-562.

Demandante, J., Demandante, L., Amamio, V. and Requieron, E. A. 2014. Application of Elliptic Fourier analysis in sex identification of Carica papaya L. based on leaf shape morphology. J. Agr. Sci. Res.,2(2): 6-12.

Deputy, J., Ming R., Ma H., Liu Z., Fitch M. M., Wang M., Manshardt, R. and Stiles J. I. 2002. Molecular markers for sex determination in papaya (Carica papaya L.). Theor. Appl. Genet.,106:107–111.

Doyle, J. and Doyle, J. 1987. Genomic plant DNA preparation from fresh tissue- CTAB method. Phytochem. Bulltein, 19(11): 11-15.

Ejaz, M., Iqbal, M., Naeemullah, M., Ahmed, I., Shahzad, A., Masood, M. S., and Ali, G. M. 2015. Validation and use of DNA markers for sex determination in papaya (Carica papaya L.). Pak. J.Bot.,47 (3): 1051-1059.

Hofmeyr, J. D. J. 1938. Genetical studies of Carica papaya L. I. The inheritance and relation of sex and certain plant characteristics. II. Sex reversal and sex forms. South Afr. Dept. Agri. Sci. Bull. No. 187:64.

Leela, M., Soorinathasundaram, K., Kumar, M. and Kavitha, C. 2018. Validation of sex expression in papaya using molecular markers. J. Agric. Sci., 9(6):1219-1222.

Lemos, E. G. M., Silva, C. L. S. P. and Zaidan, H. A. 2002. Identification of sex in Carica papaya L. using RAPD markers. Euphytica, 127(2): 179-184.

Liao, Z., Yu, Q. and Ming, R. 2017. Development of male-specific markers and identification of sex reversal mutants in papaya. Euphytica, 213(2): 53-67.

Liu, Y. C., Korol, A. B., Fahima, T. and Nevo, E. 2004. Microsatellites within genes: structure, function, and evolution. Mol. BiolEvol., 21(6): 991-1007

Magdalita, P. M. and Mercado, C. P. 2003. Determination the sex of papaya for improved produce. Bull. Food Fert. Tech. Centre, Philippines: 1-12.

Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J. H. and Salzberg, S. L. 2008. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 452(7190): 991-996.

Sobir, S., Sujiprihati, S. and Pandia, E. C. 2008. Development of SCAR marker for detection of sex expression in papaya (Carica papaya L.) from several genetic backgrounds. Bull. ofAgron., 36(3): 236-240

Sondur, S. N., Manshardt, R. M. and Stiles, J. I. 1996. A genetic linkage map of papaya based on randomly amplified polymorphic DNA markers. Theor. Appl. Genet., 93:547-553.

Storey, W. B. 1941. The botany and sex relations of the papaya. Hawaii Agr. Exp. Sta. Bul.87:5-22.

Storey, W. B. 1953. Genetics of papaya. J. Heredity,44: 70-78.

Urasaki, N., Tarora, K., Uehara, T., Chinen, I., Terauchi, R. and Tokumoto, M. 2002. Rapid and highly reliable sex diagnostic PCR assay for papaya (Carica papaya L.). Breed. Sci., 52(4): 333-335.

Yakubov, B., Barazani, O. and Golan-Goldhirsh, A. 2005. Combination of SCAR primers and Touchdown-PCR for sex identification in Pistaciavera L. ScientiaHort.103(4): 473-478.

Zhang, J., Boualem, A., Bendahmane, A. and Ming, R. 2014. Genomics of sex determination. Curr. Opin. Plant Biol., 18: 110-116.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>