Insights from morpho-physio-biochemical and molecular traits of hot pepper genotypes contrasting for heat tolerance
Downloads
Published
DOI:
https://doi.org/10.58993/ijh/2024.81.1.2Keywords:
Capsicum annuum L., high temperature tolerance, antioxidant enzymes activity, leaf gas exchange parameters, heat shock proteins (HSP)Issue
Section
License
Copyright (c) 2024 Indian Journal of Horticulture
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
The present study compared the morpho-physiological, biochemical, and molecular responses of heattolerant (DLS-161-1) and heat-susceptible (DchBL-240) genotypes of hot pepper under high-temperature conditions. The results showed that DLS-161-1 performed significantly better for various morphological parameters such as plant height (60 cm), number of fruits per plant (180.33), average fruit length (8.40 cm) and leaf parameters. While DChBL-240 has significantly higher malformed seeds per fruit (15.06) and average fruit diameter (12.56 cm). The physiological responses also differed significantly between the two genotypes, with the DLS-161-1 exhibiting higher membrane stability index (65.99%), pollen viability (92.10%), photosynthetic rate (20.73 μmol CO2 m²/sec.), stomatal conductance (0.31 mol H2O m²/sec.), and transpiration rate (8.85 mmol H2O m²/sec). Biochemical analysis revealed significantly increased activity of antioxidant enzymes such as guaiacol peroxidase (564.99 U/g F.W) and catalase (711.90 U/g FW), increased protein content (13.38 mg/g F.W) and reduced malondialdehyde generation (13.42 nmol g-1 FW) in DLS-161-1 compared to heat susceptible genotype (DChBL-240). Further, two of the six heat shock protein genes, CaHSP2271 and CaHSP3, were highly upregulated in the DLS 161-1. The observations suggest that DLS-161-1 could adapt to high-temperature conditions by regulating its morphological, physiological, biochemical and molecular mechanisms.
How to Cite
Downloads
References
Aebi, H. 1984. Catalase in vitro. In Methods in enzymology.Academic press105: 121-26.https://doi.org/10.1016/S0076-6879(84)05016-3
Altenbach, S. B., DuPont, F. M., Kothari, K. M., Chan, R., Johnson, E. L., and Lieu, D. 2003. Temperature, Water and Fertilizer Influence the Timing of Key Events During Grain Development in a US Spring Wheat. J Cereal Sci. 37: 9–20. https://doi.org/10.1006/JCRS.2002.0483
Ashraf, M. H. P. J. C., and Harris, P. J. 2013. Photosynthesis under stressful environments: an overview. Photosynthetica 51: 163-90. https://doi.org/10.1007/s11099-013-0021-6
Bates, L. S., Waldren, R. P., and Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil39(1): 205-07.https://doi.org/10.1007/BF00018060
Bhattarai, S., Harvey, J. T., Djidonou, D., and Leskovar, D. I. 2021. Exploring morpho-physiological variation for heat stress tolerance in tomato. Plants10: 347.https://doi.org/10.3390/PLANTS10020347
Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72: 248-254.https://doi.org/10.1016/0003-2697(76)90527-3
Chance, B., and Maehly, A. C. 1955. Assay of catalases and peroxidases. Methods Enzymol.2: 764–75.https://doi.org/10.1016/S0076-6879(55)02300-8
Dhindsa, R. S., Plumb-Dhindsa, P., and Thorpe, T. A. 1981. Leaf Senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot.32: 93–101.https://doi.org/10.1093/jxb/32.1.93
Dobos A, Víg R, Nagy J, and Hajos, M. T. 2014. Evaluation of the correlations between the normalized difference vegetation index (NDVI) and yield in a seasoning paprika (Capsicumannuum L. var. longum) stand. Acta Agrar. Debr.18:45-49.(published in Hungarian). https://doi.org/10.34101/actaagrar/61/2037
Ghai, N., Kaur, J., Jindal, S. K., Dhaliwal, M. S., and Pahwa, K. 2016. Physiological and biochemical response to higher temperature stress in hot pepper (Capsicum annuum L.). J. Appl. Nat. Sci.8: 1133-37.https://doi.org/10.31018/jans.v8i3.930
Heath, R. L., and Packer, L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys.125: 189–98.
https://doi.org/10.1016/0003-9861(68)90654-1
Kaur, N., Dhaliwal, M. S., Jindal, S., and Singh, P. 2016. Evaluation of Hot Pepper (Capsicum annuum L.) Genotypes for Heat Tolerance during Reproductive Phase.Int. J. Stress Manag.7: 126–29. https://doi.org/10.23910/IJBSM/2016.7.1.1386
Lee, J.Y., Marotzke, J, Bala, J Cao, J., Corti, S., Dunne, J.P., Engelbrecht, F., Fischer, E., Fyfe, J.C., Jones, C., Maycock, A. 2021. Future global climate: scenario-based projections and near-term information. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. August, 2021, V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. M. Goldfarb, I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (Eds.), Cambridge University Press, England, pp. 1-195.
https://doi.org/10.1017/9781009157896.006.553
Li, T., Xu, X., Li, Y., Wang, H., Li, Z. and Li, Z., 2015. Comparative transcriptome analysis reveals differential transcription in heat-susceptible and heat-tolerant pepper (Capsicum annum L.) cultivars under heat stress. J. Plant Biol.58: 411-424.https://doi.org/10.1007/s12374-015-0423-z
Liu, X., and Huang, B. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci.40: 503–10. https://doi.org/10.2135/cropsci2000.402503x
Mangal, M., Srivastava, A., Mirajkar, S. J., Singh, K., Solanki, V., Mandal, B., and Alia, P. 2020. Differential expression profiling of defense related genes for Leaf Curl Virus (ChiLCV) in resistant and susceptible genotypes of Chiili. Indian J Genet Plant Breed.80: 308–17.https://doi.org/10.31742/IJGPB.80.3.10
Rajametov, S. N., Lee, K., Jeong, H. B., Cho, M. C., Nam, C. W., and Yang, E. Y. 2021. Physiological traits of thirty-five tomato accessions in response to low temperature. Agriculture11: 792.https://doi.org/10.3390/agriculture11080792
Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., and Mittler, R. 2004. When defense pathways collide. The response of arabidopsis to a combination of drought and heat stress. Plant Physiol.134: 1683–96. https://doi.org/10.1104/pp.103.033431
Shen, H. F., Zhao, B., Xu, J. J., Liang, W., Huang, W. M., and Li, H. H. 2017. Effects of heat stress on changes in physiology and anatomy in two cultivars of Rhododendron. S. Afr. J. Bot.112: 338–45. https://doi.org/10.1016/j.sajb.2017.06.018
Srivastava, A., Singh, K., Khar, A., Parihar, B. R., Tomar, B. S., and Mangal, M. 2022. Morphological, biochemical and molecular insights on responses to heat stress in chilli. Indian J Hortic.79: 15-22. https://doi.org/10.5958/0974-0112.2022.00003.2
Usman, M. G., Rafii, M. Y., Ismail, M. R., Malek, M. A., and Abdul Latif, M. 2014. Heritability and genetic advance among chili pepper genotypes for heat tolerance and morphophysiological characteristics. Sci. World J.2014.https://doi.org/10.1155/2014/308042.