Insights from morpho-physio-biochemical and molecular traits of hot pepper genotypes contrasting for heat tolerance

Published

2024-03-30

DOI:

https://doi.org/10.58993/ijh/2024.81.1.2

Keywords:

Capsicum annuum L., high temperature tolerance, antioxidant enzymes activity, leaf gas exchange parameters, heat shock proteins (HSP)
Dimensions Badge

Authors

  • Aruna T.S Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • Arpita Srivastava Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • Bhoopal Singh Tomar Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • Anil Khar Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • Harikrishna Yadav Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • P.K. Jain Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • Renu Pandey Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • Shubham Singh Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • T.K. Behera Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
  • Manisha Mangal Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India

Abstract

The present study compared the morpho-physiological, biochemical, and molecular responses of heattolerant (DLS-161-1) and heat-susceptible (DchBL-240) genotypes of hot pepper under high-temperature conditions. The results showed that DLS-161-1 performed significantly better for various morphological parameters such as plant height (60 cm), number of fruits per plant (180.33), average fruit length (8.40 cm) and leaf parameters. While DChBL-240 has significantly higher malformed seeds per fruit (15.06) and average fruit diameter (12.56 cm). The physiological responses also differed significantly between the two genotypes, with the DLS-161-1 exhibiting higher membrane stability index (65.99%), pollen viability (92.10%), photosynthetic rate (20.73 μmol CO2 m²/sec.), stomatal conductance (0.31 mol H2O m²/sec.), and transpiration rate (8.85 mmol H2O m²/sec). Biochemical analysis revealed significantly increased activity of antioxidant enzymes such as guaiacol peroxidase (564.99 U/g F.W) and catalase (711.90 U/g FW), increased protein content (13.38 mg/g F.W) and reduced malondialdehyde generation (13.42 nmol g-1 FW) in DLS-161-1 compared to heat susceptible genotype (DChBL-240). Further, two of the six heat shock protein genes, CaHSP2271 and CaHSP3, were highly upregulated in the DLS 161-1. The observations suggest that DLS-161-1 could adapt to high-temperature conditions by regulating its morphological, physiological, biochemical and molecular mechanisms.

How to Cite

T.S, A., Srivastava, A., Tomar, B. S., Khar, A., Yadav, H., Jain, P., Pandey, R., Singh, S., Behera, T., & Mangal, M. (2024). Insights from morpho-physio-biochemical and molecular traits of hot pepper genotypes contrasting for heat tolerance. Indian Journal of Horticulture, 81(01), 13–18. https://doi.org/10.58993/ijh/2024.81.1.2

Downloads

Download data is not yet available.

References

Aebi, H. 1984. Catalase in vitro. In Methods in enzymology.Academic press105: 121-26.https://doi.org/10.1016/S0076-6879(84)05016-3

Altenbach, S. B., DuPont, F. M., Kothari, K. M., Chan, R., Johnson, E. L., and Lieu, D. 2003. Temperature, Water and Fertilizer Influence the Timing of Key Events During Grain Development in a US Spring Wheat. J Cereal Sci. 37: 9–20. https://doi.org/10.1006/JCRS.2002.0483

Ashraf, M. H. P. J. C., and Harris, P. J. 2013. Photosynthesis under stressful environments: an overview. Photosynthetica 51: 163-90. https://doi.org/10.1007/s11099-013-0021-6

Bates, L. S., Waldren, R. P., and Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil39(1): 205-07.https://doi.org/10.1007/BF00018060

Bhattarai, S., Harvey, J. T., Djidonou, D., and Leskovar, D. I. 2021. Exploring morpho-physiological variation for heat stress tolerance in tomato. Plants10: 347.https://doi.org/10.3390/PLANTS10020347

Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72: 248-254.https://doi.org/10.1016/0003-2697(76)90527-3

Chance, B., and Maehly, A. C. 1955. Assay of catalases and peroxidases. Methods Enzymol.2: 764–75.https://doi.org/10.1016/S0076-6879(55)02300-8

Dhindsa, R. S., Plumb-Dhindsa, P., and Thorpe, T. A. 1981. Leaf Senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot.32: 93–101.https://doi.org/10.1093/jxb/32.1.93

Dobos A, Víg R, Nagy J, and Hajos, M. T. 2014. Evaluation of the correlations between the normalized difference vegetation index (NDVI) and yield in a seasoning paprika (Capsicumannuum L. var. longum) stand. Acta Agrar. Debr.18:45-49.(published in Hungarian). https://doi.org/10.34101/actaagrar/61/2037

Ghai, N., Kaur, J., Jindal, S. K., Dhaliwal, M. S., and Pahwa, K. 2016. Physiological and biochemical response to higher temperature stress in hot pepper (Capsicum annuum L.). J. Appl. Nat. Sci.8: 1133-37.https://doi.org/10.31018/jans.v8i3.930

Heath, R. L., and Packer, L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys.125: 189–98.

https://doi.org/10.1016/0003-9861(68)90654-1

Kaur, N., Dhaliwal, M. S., Jindal, S., and Singh, P. 2016. Evaluation of Hot Pepper (Capsicum annuum L.) Genotypes for Heat Tolerance during Reproductive Phase.Int. J. Stress Manag.7: 126–29. https://doi.org/10.23910/IJBSM/2016.7.1.1386

Lee, J.Y., Marotzke, J, Bala, J Cao, J., Corti, S., Dunne, J.P., Engelbrecht, F., Fischer, E., Fyfe, J.C., Jones, C., Maycock, A. 2021. Future global climate: scenario-based projections and near-term information. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. August, 2021, V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. M. Goldfarb, I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (Eds.), Cambridge University Press, England, pp. 1-195.

https://doi.org/10.1017/9781009157896.006.553

Li, T., Xu, X., Li, Y., Wang, H., Li, Z. and Li, Z., 2015. Comparative transcriptome analysis reveals differential transcription in heat-susceptible and heat-tolerant pepper (Capsicum annum L.) cultivars under heat stress. J. Plant Biol.58: 411-424.https://doi.org/10.1007/s12374-015-0423-z

Liu, X., and Huang, B. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci.40: 503–10. https://doi.org/10.2135/cropsci2000.402503x

Mangal, M., Srivastava, A., Mirajkar, S. J., Singh, K., Solanki, V., Mandal, B., and Alia, P. 2020. Differential expression profiling of defense related genes for Leaf Curl Virus (ChiLCV) in resistant and susceptible genotypes of Chiili. Indian J Genet Plant Breed.80: 308–17.https://doi.org/10.31742/IJGPB.80.3.10

Rajametov, S. N., Lee, K., Jeong, H. B., Cho, M. C., Nam, C. W., and Yang, E. Y. 2021. Physiological traits of thirty-five tomato accessions in response to low temperature. Agriculture11: 792.https://doi.org/10.3390/agriculture11080792

Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., and Mittler, R. 2004. When defense pathways collide. The response of arabidopsis to a combination of drought and heat stress. Plant Physiol.134: 1683–96. https://doi.org/10.1104/pp.103.033431

Shen, H. F., Zhao, B., Xu, J. J., Liang, W., Huang, W. M., and Li, H. H. 2017. Effects of heat stress on changes in physiology and anatomy in two cultivars of Rhododendron. S. Afr. J. Bot.112: 338–45. https://doi.org/10.1016/j.sajb.2017.06.018

Srivastava, A., Singh, K., Khar, A., Parihar, B. R., Tomar, B. S., and Mangal, M. 2022. Morphological, biochemical and molecular insights on responses to heat stress in chilli. Indian J Hortic.79: 15-22. https://doi.org/10.5958/0974-0112.2022.00003.2

Usman, M. G., Rafii, M. Y., Ismail, M. R., Malek, M. A., and Abdul Latif, M. 2014. Heritability and genetic advance among chili pepper genotypes for heat tolerance and morphophysiological characteristics. Sci. World J.2014.https://doi.org/10.1155/2014/308042.